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Matching Behavior and the
Representation of Value in the

Parietal Cortex
Leo P. Sugrue,* Greg S. Corrado, William T. Newsome

Psychologists and economists have long appreciated the contribution of reward
history and expectation to decision-making. Yet we know little about how
specific histories of choice and reward lead to an internal representation of the
“value” of possible actions. We approached this problem through an integrated
application of behavioral, computational, and physiological techniques. Mon-
keys were placed in a dynamic foraging environment in which they had to track
the changing values of alternative choices through time. In this context, the
monkeys’ foraging behavior provided a window into their subjective valuation.
We found that a simple model based on reward history can duplicate this
behavior and that neurons in the parietal cortex represent the relative value of
competing actions predicted by this model.

Natural environments are characterized by
uncertainty in both the sources and timing of
rewards (1). Humans and other animals are
sensitive to these variables and adapt the
statistics of their foraging behavior to those
of the environment (1–4). Specifically, ani-
mals distribute their time among foraging
sites in proportion to their relative value (5),
i.e., the relative abundance of resources at
each site. This phenomenon, called matching
behavior, was studied experimentally by
Herrnstein, who expanded it into a general
principle of choice that he termed the match-
ing law (6–9). Stated mathematically, the
matching law asserts that the fraction of
choices made to any option will exactly
match the fraction of total income (i.e., total
rewards) earned from that option, or

Ik

�I
�

Ck

�C

where Ik and Ck are the total income earned and
total choices on option k, respectively, and the
summations are over all available options.

To match behavior to income, animals
must integrate rewards earned from partic-
ular behaviors, and the brain, in turn, must
maintain an appropriate representation of
the value [i.e., reward frequency (5)] of
competing alternatives. Matching provides
a behavioral readout of this internal repre-
sentation. By studying matching in the con-
text of visually based eye movement behav-

ior, we aim to leverage our knowledge of
the anatomy and physiology of the primate
visual and oculomotor systems to investi-
gate how value is represented at the neural
level. For this purpose, we trained rhesus
monkeys (Macacca mulatta) to perform a
dynamic version of a classical matching
task in which saccadic eye movements to a
pair of competing visual targets are reward-
ed at different rates (Fig. 1A) (10).
A dynamic foraging task. On each trial

in this task, the monkey is free to choose
between two targets; the color of each tar-
get cues the probability that its selection
with an eye movement will be rewarded
with a drop of juice. Analogous to natural
environments, rewards in this task are as-
signed to the two colors at rates that are
independent and stochastic (Poisson prob-
ability distribution). Once assigned, a re-
ward remains available until the associated
color is chosen (11). This persistence of
assigned rewards means that the likelihood
of being rewarded increases with the time
since a color was last chosen, and ensures
that matching approximates the optimal
probabilistic strategy in this task (12–14).

Figure 1B depicts representative behavioral
data from a single session in which a monkey
experienced a series of six different ratios of
reward rates. Two features of these data are
notable. First, the blue line generally parallels
the black, indicating that the monkey indeed
matched the ratio of its choices to the ratio of
incomes from the two colors, as predicted by
the matching law. Second, the monkey appears
to adjust its behavior very rapidly to unsignaled
changes in the rates of reward.

The income ratios indicated by the black
lines in Fig. 1B represent mean reward

rates and obscure the stochastic manner in
which rewards become available in the
task. We can visualize this variability by
plotting instantaneous estimates of choice
and income ratios (Fig. 1C). These esti-
mates suggest that the relationship between
choices and experienced rewards is highly
local in time. This is evident both at the
transitions between income ratios, when
behavior lawfully and rapidly adjusts to
unsignaled changes in the rates of reward,
and within blocks, when choices track local
variability in the experienced income ratio
(red asterisks). If behavior were based on a
representation of reward history that ex-
tended into the distant past, it would be
incapable of such rapid adjustment (15).

Traditionally applied to foraging in sta-
tionary environments (for which reward
rates do not change), the matching law
relates cumulative choice to total experi-
enced income and is intrinsically a global
description of behavior averaged over long
periods of time. The data in Fig. 1, B and C,
confirm an earlier study of rats by Gallistel
and colleagues (16), in which they ob-
served that animals accustomed to dynamic
environments can match under such condi-
tions. Our data further suggest that this
behavior is driven by a process that is
intrinsically local in time. These results
prompt us to ask whether the classical
matching law can be reformulated as a
more local description and whether this
description can explain the behavior that
we observed.
A local formulation of matching. In-

come earned during a behavioral session is sim-
ply the integrated reward stream that an animal
has experienced (Fig. 2A). In the traditional
matching law, each new reward contributes
equally to the income attributed to a particular
option without discount or decay. The fractional
income for a particular option (the income from
that option divided by the total income from all
available options) then dictates the proportion of
choices allocated to it. But what if our integrator
were not perfect, but somewhat leaky (Fig. 2B)?
This leak would confer a finite effective memory
on estimates of income, making them local rath-
er than global. In this model, the local fractional
income translates directly into the instantaneous
probability of choice for a given option (17).
Importantly, this proposed local matching rule
obeys the correspondence principle: When lim-
ited to large data sets and stationary environ-
ments (where matching has been most extensive-
ly documented), the predictions of our local
matching rule approximate those of the classical
global matching law. We show below that the
leaky integration model is surprisingly success-
ful at describing behavior in our dynamic task.
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Postulating a process of leaky integration
marks a conceptual shift from the parameter-
less matching law, appropriate for stationary
reward conditions, to a one-parameter model
of matching behavior appropriate for dynam-
ic conditions. The single parameter in this
simple model is the time constant � of the
leaky integrator. How do changing values of
� affect the model’s behavior? Intuitively,
higher values of � mean slower leaks and
would give rise to more stable and accurate
estimates of income. The cost of such reliable
estimates is that they respond sluggishly to
changes in the environment. Conversely, low-
er values of � produce estimates of income that
respond quickly to change, but are substantially
noisier during periods of stability. Given this
trade-off between accuracy and adaptability,
what value of � yields the highest income given
the statistics of our task?

To answer this question, we simulated the
behavior of the model on our task and exam-
ined how its performance varied as a function
of the integration time constant �. Each simu-
lation consisted of a quarter of a million choices
made by a model with a particular � across the
identical sequence of reward-rate ratios and
block lengths encountered by our monkeys.
The thick black curve in Fig. 2C plots the
outcome of these simulations in terms of forag-
ing efficiency (the percentage of the maximum
reward rate achieved). We also plot realistic
bounds for performance imposed by the struc-
ture of the task. The upper bound demarcates
the average performance of an ideal probabilis-
tic forager. This hypothetical ideal strategy
“knows” the reward rate of each option, thereby
dispensing with the estimation process, and
uses this information to make choices that max-
imize its expected rate of reward. In contrast,
the lower bound shows the average perfor-
mance of a completely random foraging strate-
gy and represents chance performance in our
task. Despite its simplicity, the best-performing
leaky integrator model does well relative to
these bounds, collecting 93% of the rewards
attained by the ideal clairvoyant strategy.

How does our model compare to the
choices of real biological players? Our
monkeys’ behavior, indicated by the blue
circles on the same panel, corresponds well
with the predictions of the model. We es-
timated � for each monkey by minimizing
the mean squared error between the proba-
bility of choice predicted by the model and
the animal’s actual binary choices across
all experiments. For each monkey, this
best-fit � lies within a standard error of the
best-performing model. Foraging efficien-
cy was estimated as the percentage of the
maximum reward rate achieved by each
monkey across all experiments. These per-
formance levels fall just below that of the
model with a similar time constant, an un-
surprising outcome given that the monkeys,

unlike the model, are susceptible to vari-
ables such as distraction and satiation.

The next three panels of Fig. 2 further
explore the similarity between the behavior
of the best model and that of our monkeys.
Figure 2D shows the cumulative responses
of the best model (� � nine choices) across
the same series of blocks shown in Fig. 1C
for Monkey G. Qualitatively, the model
exhibits dynamic matching behavior that is
very similar to that of the animal. The next
two panels (Fig. 2, E and F) reinforce this
impression with more quantitative compar-
isons. First, the model predicts that the
probability of choosing red will vary lin-
early with the local fractional income from
red (the unity line in Fig. 2E). Figure 2E
shows this to be approximately true for the
behavioral data. Second, because the model
is strictly probabilistic, it predicts that the
number of successive trials on which a
player (monkey or model) will choose a
given color before switching will be dis-
tributed as the average of a family of ex-
ponentials. Figure 2F plots these distribu-
tions of stay durations; not only is the

monkeys’ distribution exponential, but it is
almost an exact fit to that of the model with
the best-performing � (18).

These similarities in qualitative behavior,
foraging performance, fitted �, and simple
statistics demonstrate that our local matching
rule is an adequate descriptive model of real
choice behavior in this dynamic foraging task
(19). Moreover, they suggest that our animals
have tuned the time over which they integrate
reward information to be optimal for the par-
ticular statistics of the task they encountered.
The importance of this modeling effort goes
beyond its utility in understanding behavior.
The model provides us a window into the
animal’s internal valuation of available op-
tions and gives us a metric—local fractional
income—that allows us to estimate how the
monkey values each of the two colors on
every trial, even before it renders a decision.
Equipped with this quantitative trial-by-trial
measure, we are poised to explore how value
is represented in the brain.
The representation of fractional in-

come in the parietal cortex. The lateral
intraparietal (LIP) area of the posterior pari-

Fig. 1. Matching be-
havior in monkeys.
(A) The sequence of
events of an oculomo-
tor matching task: (i)
Fixate. To begin a run
of trials, the animal
must fixate the central
cross. (ii) Delay. Sac-
cade targets appear
(randomized spatially
by color) in opposite
hemifields while the
animal maintains fixa-
tion. (iii) Go. Dimming
of the fixation cross
cues a saccadic re-
sponse and hold. (iv)
Return. Brightening of
the fixation cross cues
return, target colors are
then rerandomized,
and the delay period of
the next trial begins.
Reward is delivered at
the time of the re-
sponse, if at all. Overall
maximum reward rate
is set at 0.15 rewards
per second. Relative re-
ward rates changed in
blocks (�100 to 200
trials) without warning;
ratios of reward rates were chosen unpredictably from the set {8 :1, 6 :1, 3 :1, 1:1}. (B) Dynamic
matching behavior. Representative behavior of Monkey G during a single session. Continuous blue curve
shows cumulative choices of the red and green targets. Black lines show average ratio of incomes
(red:green) within each block (here, 1:1, 1:3, 3 :1, 1:1, 1:6, and 6:1). Matching predicts that the blue and
black curves are parallel. (C) Slope space. Same data as in (B), plotted to allow visualization of ongoing
covariation in local ratios of income and choice. The x axis shows session time (in choices). The y axis
shows running estimates of the ratios of income (black) or choice (blue). Ratios were computed after
smoothing the series of rewards or choices with a causal half-Guassian kernel (SD of six choices) and
are expressed as slopes (arctangent of ratio). Thick horizontal black and blue lines indicate average
income and choice ratios within each block. Red asterisks highlight example regions where the choice
ratio obviously tracks local noise in the experienced ratio of incomes.
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etal cortex contains activity appropriate for
guiding saccadic eye movements, signals that
have been variously interpreted as working
memory for visual targets, attention to salient
spatial locations, or motor planning (20–23).
In the context of more sophisticated eye
movement tasks, investigators have docu-
mented the modulation of LIP activity by the
strength of sensory evidence that supports a
perceptual judgment (24–26) and by both the
prior probability that a particular movement
is instructed and the volume of juice associ-
ated with that movement (27). Such encoding
of information from diverse sources is a pro-
posed property of brain areas responsible for
computing putative decision variables that
link sensory information to motor responses

(28). If this suggestion is correct, and LIP is
indeed an important locus for oculomotor
decisions, then in a setting where eye move-
ment decisions are informed by reward his-
tory and expectation, we anticipate the appro-
priate decision variable to be represented in
LIP. Accordingly, the following physiologi-
cal experiments test the prediction that in the
matching task, neurons in LIP encode the
local fractional income (Fig. 2B) of compet-
ing target colors.

We selected for study LIP neurons that
showed sustained, spatially selective activ-
ity in the context of a classical delayed
saccade task (Fig. 3A). These neurons re-
spond only when targets are presented
within a circumscribed region of the visual

field termed the cell’s response field (RF).
Approximately one-third of the cells that
we encountered in LIP met this criterion,
including 33 neurons from the left hemi-
sphere of Monkey G and 29 from the right
hemisphere of Monkey F.

Figure 4A illustrates how we studied
these 62 LIP neurons in the matching con-
text. Critically, in this setting, trials that
shared an identical visual stimulus config-
uration and ended in the same motor re-
sponse still varied widely in the local frac-
tional income of the chosen target. Thus, on
some trials the monkey chose the target
inside the cell’s RF and this target had a
high fractional income, whereas on other
trials the fractional income was much low-
er. Our experimental question was whether,
within each category of motor response,
activity in LIP is influenced by the local
fractional income of the chosen target.

Figure 4B shows representative data from
the same cell featured in Fig. 3, now recorded
during performance of the matching task. For
each trial, the cell’s mean delay-period response
is plotted against the local fractional income of
the chosen target. Activity is shown separately
for trials that end in saccades into (blue) and out
of (green) the cell’s RF. We observed a positive
correlation between firing rate and fractional
income for choices into the RF and a negative
correlation for choices out of the RF. The solid
lines are regressions fit to these two sets of data
by the method of least squares and are charac-
terized by positive and negative slopes for
choices into and out of the RF, respectively.
When the fractional income of the chosen
color is low, the clouds of blue and green
points overlap, indicating that the activity
of this particular cell is no longer a reliable
indicator of the direction of the monkey’s
saccade at the end of the trial. This result is
particularly notable given that this cell was
chosen for its spatial selectivity in the de-
layed saccade task (Fig. 3, A and B).

To see how the effect of fractional income
varies across our population of LIP cells, we
performed this regression analysis for each
neuron in our sample. Figure 4C shows the
resulting regression slopes. The upper histo-
gram (blue) is the distribution of slopes for
choices into each cell’s RF. Consistent with
the example in Fig. 4B, this distribution is
centered to the right of zero, indicating pos-
itive regressions of activity on fractional in-
come. The lower histogram (green) is the
analogous distribution of slopes for choices
out of each cell’s RF. Again, in keeping with
the example, this distribution is centered to
the left of zero, indicating negative regres-
sions of activity on fractional income. Impor-
tantly, in the delayed saccade task, none of
these neurons showed any influence of recent
reward history as described by the local in-
come from the lone response target (Fig. 3C).

Fig. 2. A model of dy-
namic matching be-
havior. (A) Equation
(top) shows a restate-
ment of the classical
global matching law,
relating fractional in-
come to fractional
choice (stated here in
terms of the red tar-
get). Schematic (bot-
tom) shows that in
global matching, cu-
mulative income, I, is
computed by perfect
integration of the
stream of rewards up
to the current time, t .
(B) Equation (top)
shows a local imple-
mentation of the
matching law, relating
local fractional in-
come to instanta-
neous probability of
choice, pc. Schematic
(bottom) shows that
local income, Î, is
computed with the
use of a leaky integra-
tor with time constant
�. In practice, the
monkey’s history of
choices and rewards
on each color was rep-
resented as a vector of
1’s and 0’s, indicating
rewarded and unre-
warded choices, respectively. The individual reward histories were then convolved with the
corresponding exponential filter to compute the local income for each color. In (C) to (F),
monkey behavior is illustrated in blue and the behavior of the model in black. (C) Percentage
of available rewards collected as a function of � (in choices). Model performance (thick black
curve; gray bands indicate standard error) is based on simulations of 250,000 trials on block
sequences identical to those presented to the animals. Bounds for chance and idealized
strategies are shown for reference (horizontal black lines). For the behavior of each monkey,
blue circles show performance and best-fit values of � with standard errors (vertical and
horizontal lines, respectively). (D) Behavior of Monkey G and of the best-performing model
(� � 9) for the same single experiment shown in Fig. 1. Circles indicate block transitions. (E)
Probability of choosing the red target plotted as a function of the local fractional income from
red. The unity line corresponds to idealized behavior of the model. For the monkeys, the
best-fit � was used to compute fractional income, and probability of choice with standard error
(small bars within the circles) was plotted for each of 10 equally populated fractional income
bins. (F) Relative frequencies of stays of different duration for monkeys (combined) and model
(� � 9). A stay corresponds to a series of successive choices to one color.
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The preceding analysis assumes that all
eye movements to a particular target are
effectively equivalent. To control for the
possibility that subtle variations in the pre-
cise metrics of saccades to the same target
location might cause changes in LIP firing
rates, we expanded our regression model of
each cell’s response to include a range of
saccade metrics as co-regressors (29). If
our results actually reflect a subtle effect of
saccade metrics, explicit inclusion of these
factors should nullify the apparent influ-
ence of fractional income. Instead, the 43
cells that showed a significant effect of fraction-
al income continued to do so after the inclusion
of these co-regressors (95% confidence interval
for the fractional income coefficient still ex-
cluded zero), and the magnitude of this effect
was largely unchanged (average decrease in
effect size � 14%).

To examine the time course of the effect
of fractional income across the population,
we peak-normalized the firing rates of the 43
cells that showed a significant regression ef-
fect and computed the average time course of
the cells’ response as a function of fractional
income. Figure 5 plots these average normal-
ized rates for the population. Two important
points emerge from this analysis. First, the
effect of fractional income is not apparent at
the beginning of the trial, but emerges over
time. Second, activity remains graded with
respect to fractional income up to the time of
the saccade itself, irrespective of whether this
saccade is directed into (blue) or out of
(green) the cell’s RF. This suggests that this
population of LIP neurons encodes informa-
tion about the value of locations in space,
whether or not they are the endpoint of the
impending saccade.
Discussion and conclusions. Matching

belongs to a class of behaviors purported to
engage cognitive mechanisms that animals
use when competing for resources in sto-
chastic environments. Because matching
results in an equilibrium state in which
returns from competing behaviors are
equalized, it represents a stable and effec-
tive foraging strategy from both an evolu-
tionary and game theoretic perspective.

Somewhat surprisingly, we find that
matching behavior in a dynamic context is
well described by a simple local reformu-
lation of the classical matching law. This
local matching rule uses leaky integrators
of rewards to estimate the local income
earned from competing behaviors and sets
the instantaneous probability of choosing
an alternative equal to its local fractional
income. This simple model has only one
tuned parameter: the decay constant (�) of
the integrators. Intriguingly, we found that
the specific values of � used by our animals
were optimally tuned for the statistics of
the environment they encountered in this

Fig. 3. Activity of an LIP neuron during
the delayed saccade task. (A) Delayed
saccade task used for cell selection.
Only a single purple target is presented
on each trial at one of a variety of
spatial locations. The sequence of
events is otherwise identical to Fig. 1,
and rewards were delivered at the same
overall rate used in the matching task.
Dotted blue oval represents LIP re-
sponse field (RF). (B) Response histo-
grams of an example cell for trials into
(blue) and out of (green) this cell’s RF
demonstrate classical LIP spatial selec-
tivity. Activity is aligned on both the
appearance of the visual target (left)
and the time of the saccade (right). The
break in the time axis reflects this dual
alignment for trials of variable length.
spks/sec, spikes per second. (C) Activity
during the delayed saccade task shows
no dependence on recent reward histo-
ry. For trials into (blue) and out of (green) the cell’s RF, average delay-period activity is plotted
against the local income resulting from the single purple target. Local income was estimated by
filtering reward history with a local exponential with the same best-fit � that was used to compute
fractional income in Fig. 2.

Fig. 4. Activity in LIP
during the matching
task. (A) Task geome-
try used in the match-
ing task. Dotted blue
oval represents RF of
the LIP cell under
study. Color-location
association was ran-
domized between tri-
als. (B) Representative
matching data from
the same example LIP
neuron shown in Fig.
3. For each trial, mean
delay-period activity
is plotted as a func-
tion of the local frac-
tional income of the
chosen target. Blue
and green indicate
choices into and out
of the RF respectively. Lines are least squares regressions fit to the corresponding points (blue:
slope � 11.4, r � 0.4, P � 0.001; green: slope � –19.9, r � 0.58, P � 0.001). (C) Distribution of
slopes for regression of firing rate on local fractional income across our population of 62 LIP
neurons. Separate distributions show effect for choices into (upper, blue) and out of (lower, green)
each cell’s RF; 95% confidence intervals for means of these distributions are 2.1 to 4.5 and –6.6 to
–4.0, respectively. Filled bars highlight regressions that are significant at the 0.05 level. Asterisks
indicate the example cell.

Fig. 5. Time course of
the effect of local frac-
tional income. Response
histograms show aver-
age peak-normalized
firing rates for 43 cells
with activity that re-
gressed significantly on
fractional income. Be-
fore normalization and
averaging, raw spike
trains were smoothed
with a Gaussian kernel
(SD � 20 ms). Activity
is aligned on both the appearance of the visual target (left), and the time of the saccade (right), and is
shown separately for choices into (blue) and out of (green) the cell’s RF. Trials are further subdivided into
four groups according to the local fractional income of the chosen target: solid thick lines, 0.75 to 1.0;
solid medium lines, 0.5 to 0.75; solid thin lines, 0.25 to 0.5; dotted thin lines, 0 to 0.25.
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task. By manipulating overall reward rate
and the dynamics with which rates change,
future experiments may address whether
animals can flexibly adjust the time scale of
their integration to maintain this optimality.

Previous studies have documented re-
ward- and value-related signals in numerous
cortical and subcortical areas [reviewed in
(30)], but primarily in the context of imper-
ative tasks where behavioral responses are
directly instructed or conditioned. We sug-
gest that elucidating the functional roles of
these signals will require studying them in
settings where value itself is the primary
determinant of behavior. Our current work
marks an initial step in this direction, as does
ongoing work in other laboratories (31, 32).
Interpreting neural activity in such “free
choice” contexts necessitates a further meth-
odological shift from correlations with direct-
ly accessible sensory or behavioral events to
quantitative modeling of the ostensibly “hid-
den” variables that link experience to action.
During performance of the matching task, we
found that the activity of single LIP neurons
parametrically encoded trial-to-trial fluctua-
tions in the pertinent decision variable: local
fractional income. This result supports the
suggestion that area LIP plays a role in im-
plementing oculomotor decisions and extends
the findings of previous studies of LIP activ-
ity in the context of visual motion discrimi-
nation tasks (24–26) to the realm of value-
based choice.

Is local fractional income actually com-
puted in LIP? Although activity in area LIP is
correlated with this value metric, it is unlikely
the primary locus where fractional income is
computed and maintained. A population of
neurons whose activity directly encoded val-
ue should do so in terms of the relevant value
cue (in this case, color, not space) and main-
tain that representation across an appropriate
time scale (in this case, several trials) (Fig.
2B). In contrast, income-related signals in
LIP are spatially mapped and are “reset” at
the start of each trial, developing anew over
the first several hundred milliseconds (Fig.
5). An important direction for future research
will be to identify where value is first explic-
itly encoded in the brain and how this repre-
sentation is conferred with a temporal profile
appropriate for optimal behavior.

Rather than computing value, we suggest
that area LIP plays a critical role in remap-
ping abstract valuation to concrete action.
This remapping is demanded by the logic of
our task: On every trial the monkey must
transform a color-based representation of val-
ue into a spatial eye-movement plan. By rep-
resenting value in spatial terms, LIP may
contribute to this transformation and directly
influence the probability that a particular re-
gion of space will serve as the endpoint of the
next saccade. This interpretation is consistent

with the unifying proposal that area LIP func-
tions as a saliency map of visual space (33) of
the type invoked in visual psychophysics or
computational vision (34, 35), capable of
flexibly combining and representing a variety
of information for the purpose of guiding eye
movements or shifts in visual attention.
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Selective Growth of Metal Tips
onto Semiconductor Quantum

Rods and Tetrapods
Taleb Mokari,1,2 Eli Rothenberg,1,2 Inna Popov,2 Ronny Costi,1,2

Uri Banin1,2*

We show the anisotropic selective growth of gold tips onto semiconductor (cad-
mium selenide) nanorods and tetrapods by a simple reaction. The size of the gold
tips can be controlled by the concentration of the starting materials. The
new nanostructures display modified optical properties caused by the strong
coupling between the gold and semiconductor parts. The gold tips show
increased conductivity as well as selective chemical affinity for forming
self-assembled chains of rods. Such gold-tipped nanostructures provide
natural contact points for self-assembly and for electrical devices and can
solve the difficult problem of contacting colloidal nanorods and tetrapods
to the external world.

Anisotropic growth of nanomaterials has led to
the development of complex and diverse nano-
structures such as rods (1, 2), tetrapods (3), prisms
(4), cubes (5), and additional shapes (6, 7). These
architectures display new properties and enrich
the selection of nano–building blocks for electri-
cal, optical, and sensorial device construction.
New functionality, such as emissive or rectifying
junctions, is introduced into the nanostructure by
anisotropic growth with compositional variations.
This has been realized by growing semiconductor
heterostructures such as p-n junctions and material
junctions (e.g., GaAs/GaP) in nanowires (8, 9). In
the case of colloidal nanocrystals, growth of a
dot-rod structure composed of two different semi-
conductors and other complex branched structures
was achieved (10). In these examples, anisotropic
growth was performed with the same material
type (semiconductor). Here we report the selective
anisotropic growth of two different material sys-
tems, a metal onto a semiconductor. We devel-
oped a simple method for the selective growth
of gold dots onto the tips of colloidal semicon-

ductor nanorods and tetrapods. This combina-
tion provides new functionalities to the nano-
structures, the most important of which is the
formation of natural anchor points that can serve
as a recognition element for directed self-assem-
bly and for wiring them onto electrical circuitry.

This advancement has direct relevance to the
problem of contact reproducibility and contact
resistance that has hindered the study of conduc-
tance in nanostructures. Recently there have been
reports of good connectivity for micrometer-long
quasi–one-dimensional structures such as nano-
tubes and nanowires (11–13). However, wiring of
the shorter colloidal semiconductor rods and tet-
rapods studied here, with arm lengths of less than
100 nm, has long been an open issue. The use of
bifunctional organic ligands, primarily dithiols, as
contacting ligands—as used in scanning tunneling
microscopy studies (14) and in transport measure-

ments (15)—creates a tunneling barrier, and
transport is often dominated by the contact
resistances. The use of DNA-based assembly
for creating functional circuitry (16, 17 ) also
requires selective anchor points for the direct-
ed assembly of nanostructures (18). The Au
tips are natural recognition elements for this task
as well as for creating complex self-assembled
architectures with semiconductor rods and tetrap-
ods in solution (19) and onto substrates.

We prepared CdSe rods and tetrapods of dif-
ferent dimensions by high-temperature pyrolysis
of suitable precursors in a coordinating solvent
containing a mixture of trioctylphosphineoxide
and phosphonic acids (1, 20, 21). We dissolved
AuCl3 in toluene with the addition of dodecyldim-
ethylammonium bromide (DDAB) and dode-
cylamine. For growth of Au tips, we mixed this
solution at room temperature with a toluene solu-
tion of the colloidal-grown CdSe nanorods or
tetrapods. After the reaction, the quantum rods
were precipitated by addition of methanol and
separated by centrifugation. The purified product
could then be redissolved in toluene for further
study (22).

Figure 1 presents transmission electron mi-
croscopy ( TEM) images showing growth of Au
onto CdSe quantum rods of dimensions 29 � 4
nm (length � diameter); the procedure involved
gradual addition of larger amounts of Au precur-
sors (see Table 1 for details). Selective Au growth
onto the rod tips (Fig. 1, B to D) is clearly iden-
tified as the appearance of points with enhanced
contrast. The rods now appear as “nano-
dumbbells.” Moreover, by controlling the amount
of initial Au precursor, it is possible to control the
size of the Au tips on the nano-dumbbell edges,
from �2.2 nm (Fig. 1B) to �2.9 nm (Fig.
1C) to �4.0 nm (Fig. 1D) (see Table 1).
The procedure clearly leads to the growth of

1Institute of Chemistry, Farkas Center for Light-
Induced Processes, 2Center for Nanoscience and
Nanotechnology, Hebrew University of Jerusalem,
Jerusalem 91904, Israel.

*To whom correspondence should be addressed. E-
mail: banin@chem.ch.huji.ac.il

Table 1. Details for Au growth on 29 � 4 nm rods as shown in Fig. 1, with average dimensions (full
histograms are shown in fig. S1).

Sample
Nanocrystals
(mg)

Dodecylamine
(mg)

DDAB
(mg)

AuCl3
(mg)

Rod size
(L � D, nm)

Gold ball size
(nm)

1 — — — — 29� 4 (original rod)
2 10 40 25 4 25.6� 3.3 2.22
3 10 90 50 8 23.9� 3.4 2.9
4 10 160 100 13.5 20.8� 3.2 4
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