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Activity in Posterior Parietal Cortex
Is Correlated with the Relative
Subjective Desirability of Action

and Wurtz, 2001). By manipulating the probability of
reward, the magnitude of reward, or the recent history
of rewards, these previous studies were similar in that
they altered the overall desirability of producing a
given saccade.
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In related work, behavioral and theoretical studies
have begun to describe the algorithms by which rationalSummary
human, animal, and artificial choosers actually compute
the desirability of actions. Within the machine learningBehavioral studies suggest that making a decision in-
community, choosers use algorithms that estimate thevolves representing the overall desirability of all avail-
value of each available course of action and then selectable actions and then selecting that action that is most
for execution the course of action estimated to havedesirable. Physiological studies have proposed that
the highest average value (cf. Sutton and Barto, 1998).neurons in the parietal cortex play a role in selecting
Within economic circles, expected utility theory has pro-movements for execution. To test the hypothesis that
vided a useful, if imperfect, estimate of the desirabilitythese parietal neurons encode the subjective desir-
of actions for human and animal choosers (Camerer,ability of making particular movements, we exploited
2003). Expected utility is calculated as a function of theNash’s game theoretic equilibrium, during which the
probability, magnitude, and delay to a reward (cf. Kreps,subjective desirability of multiple actions should be
1990). These studies indicate that decision making can,equal for human players. Behavior measured during a
in principle, be modeled as a process in which manystrategic game suggests that monkeys’ choices, like
variables influence a common representation of desir-those of humans, are guided by subjective desirability.
ability, and it is this common representation upon whichUnder these conditions, activity in the parietal cortex
the choice mechanism is hypothesized to operate whenwas correlated with the relative subjective desirability
it selects an action for execution.of actions irrespective of the specific combination of

If decisions about what saccade to produce are gener-reward magnitude, reward probability, and response
ated in part by the neurons in area LIP, as a numberprobability associated with each action. These obser-
of physiologists have proposed, and decision makingvations may help place many recent findings regarding
involves a representation of the overall desirability ofthe posterior parietal cortex into a common concep-
each available course of action, as decision scientiststual framework.
propose, then it would be logical to hypothesize that
the subjective desirability of potential saccades may beIntroduction
represented in area LIP. A strategy for examining this
hypothesis further is to systematically disassociate the

Physiological studies conducted during different types
subjective desirability of a saccade from other decision

of visual-saccadic decision making indicate a correla-
variables associated with a saccade. To accomplish

tion between neural activity in the lateral intraparietal this, we borrowed a behavioral task from game theory,
area (area LIP) and several variables related to an ani- a branch of economics developed to describe the com-
mal’s decision about what eye movement to produce. plex behavior that arises during strategic interactions
Among others, these variables include the intention to among agents whose choices dynamically influence the
make a saccade (Gnadt and Andersen, 1988), the log desirability of each other’s actions. As stated by von
likelihood that a given eye movement will result in a Neumann and Morgenstern (1944) when they developed
reward (Gold and Shadlen, 2000, 2001), the integral of the first tools to tackle these problems: “If two or more
perceptual signals indicating which saccade will be re- persons exchange goods with each other, then the re-
warded (Shadlen and Newsome, 1996, 2001), the proba- sults for each one will depend in general not merely
bility and magnitude of reward associated with a sac- upon his own actions but on those of the others as well.
cade (Platt and Glimcher, 1999), the average rate at Thus each participant attempts to maximize a func-
which choice of an option has been rewarded in the tion…of which he does not control all the variables. This
recent past (Sugrue et al., 2004), the instantaneous likeli- is certainly no [classical] maximization problem, but a
hood, or hazard, that a reinforced saccade will be in- peculiar and disconcerting mixture of several conflicting
structed (P. Janssen and M.N. Shadlen, 2003, Represen- maximization problems.”
tation of the hazard function of elapsed time by neurons The task we used was the inspection game (Kreps,
in macaque area LIP, Soc. Neurosci., abstract), or some 1990), and it has two features that are important for our
combination of these variables (Coe et al., 2002). Each purposes. First, there is no single correct action. Free
of these variables, in turn, may influence saccade pro- to choose, rational subjects adopt a mixed strategy in
duction via the connection of area LIP with other sac- which they devote a certain proportion of responses to
cade-related areas (Andersen et al., 1985, 1990; Paré each action (Fudenberg and Tirole, 1994). Second, Nash

(1950, 1951) defined these mixed strategy equilbria as
situations in which the subjective desirability of each*Correspondence: glimcher@cns.nyu.edu
available action is, on average, equivalent. Essentially,2 Present address: Department of Physiology, Queen’s University,

Kingston, Ontario, Canada (dorrism@biomed.queensu.ca). he proposed that if one of the available actions was
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perceived as more desirable than any other, then ratio-
nal choosers would always select that action. Mixed
strategies would only arise when the two or more actions
being mixed were of precisely equal desirability. The
critical concept underlying our experiments is that multi-
ple decision-related variables trade off against each
other with the end result being that the subjective desir-
ability of each available action remains equal whenever
mixed strategy equilibrium of the type Nash predicted is
produced. Here we use these features of mixed strategy
equilibria to test whether area LIP represents the subjec-
tive desirability of available actions even when individual
decision variables or movement probabilities vary.

More specifically, we hypothesize that LIP activity is
correlated with the relative subjective desirability of sac-
cades, that is, the subjective estimate of desirability
associated with the saccade in the neuron’s response
field divided by the sum of the subjective desirability
associated with all available saccades (cf. Herrnstein,
1961). Although Nash’s own work was initially based on
calculations of absolute subjective desirability, subse-

Figure 1. The Mixed Strategy Inspection Gamequent behavioral experiments have suggested that hu-
(A) General form of the payoff matrix. The variables in the bottommans employ a measure of relative desirability during
left of each cell determine the subject’s payoffs, and the variablesmost decision making (Kahneman and Tversky, 1979).
in the top right of each cell determine the opponent’s payoffs forMoreover, our current understanding of LIP (Platt and
each combination of player’s responses. I � cost of inspection to

Glimcher, 1999; Gold and Shadlen, 2001) and of the the opponent � 0.1–0.9 in 0.2 steps. One unit of payoff � 0.25 mL
general mechanisms of cortical processing (Heeger et of water for monkey � $0.05 for human. See Experimental Proce-
al., 1996) argue that if LIP does contribute to decision dures for more details.

(B) Manual inspection game played by human subjects. Humansmaking it should do so in a relativistic fashion. If this
were free to choose either the certain (button 1) or risky (button 2)hypothesis could be further tested, then we might be
option by clicking the appropriate button with a pointer controlledable to conclude that the equilibrium computations that
by a computer mouse (black arrow). At the end of each trial, their

real organisms perform are computed in relative terms. payoff in cents was presented in the center of the display.
Although we did not measure the precise subjective (C) Oculomotor inspection game played by monkey subjects. Mon-

desirability associated with the actions available to our key subjects were free to choose either the certain target (green)
or the risky target (red) when the central fixation point was extin-monkeys, like other decision scientists, we assume that
guished for the second time. The dashed circles indicate the currenttheir patterns of choices must reflect these desirabilities.
direction of gaze. Instructed trials were identical except the fixationThese presumptions are supported by our measure-
point reappeared as either green or red, indicating which targetments of monkey behavior during the inspection game.
would be rewarded at the end of the trial (not shown).

Working from this starting point, we systematically var-
ied the relative subjective desirability of two saccades
during nonstrategic blocks of trials in which the re-

Resultssponses of the monkeys were held constant. Under
these conditions, LIP firing rates varied in a manner

Behaviorsimilar to relative subjective desirability. Next we varied
Our first goal was to compare the behavior of humansthe responses of the monkeys by manipulations made
and monkeys during a strategic game to determineduring a strategic game, a condition during which rela-
whether monkeys showed the same mixed strategy be-tive subjective desirability should remain paradoxically
havior that the Nash equilibrium predicts will occur inconstant while behavior varies. Under these conditions,
human subjects (cf. Nash, 1950, 1951; Kreps, 1990; Fu-LIP firing rates were largely constant, fluctuating only
denberg and Tirole, 1994). We chose the inspectionweakly and in a manner that would be consistent with
game because the proportion of responses that subjectsmechanistic predictions about how game theoretic equi-
devote to each option can be experimentally manipu-libriums are maintained (Camerer, 2003). Finally, we ex-
lated while the payoffs associated with each option re-plicitly tested the notion that LIP represents the subjec-
main constant (Figure 1A). On each trial, subjects chosetive desirability of actions in a relative and not an
either the certain option, whose payoff was always oneabsolute manner. Under these conditions, we found that
unit of reward, or the risky option, whose payoff wasLIP firing rates were more tightly correlated with relative
either two or zero units of reward (see Experimentalestimates of subjective desirability than with absolute
Procedures for details). The subject received the riskyestimates of subjective desirability. Taken together,
reward only if the other player (the opponent) selectedthese data suggest that neurons in the posterior parietal
the “no inspect” option; otherwise, the subject receivedcortex may encode response desirability. LIP firing rates
nothing. The likelihood that the opponent would chooseare influenced by many decision variables specifically
the no inspect option was influenced, in large part, bybecause they provide a general purpose encoding of
an independent variable affecting the opponent’s pay-movement desirabilities of the type that would be ex-

pected in a response selection system. offs—the cost of inspection (Figure 1A; variable I). In-
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second block of trials in which the subject failed to reach
the predicted 90% rate of choosing the risky option.
This had the effect of lowering the desirability of the
inspect option for the opponent and, therefore, reduced
his inspect rate.

To quantify the influence of changing the opponents’
cost of inspection variable on the subjects’ rates of
choosing the risky option, we averaged the choice be-
havior over the last half of each block once subjects
had presumably reached a stable equilibrium state. We
found that the human subjects (n � 5) did indeed adopt
mixed strategies and that the equilibrium rates of choos-
ing the risky option were influenced by changes in the
opponents’ payoffs (Figure 3A, black circles). Choosing
mixed strategies of a certain proportion of each re-
sponse is consistent with the notion that the averageFigure 2. Human versus Human Choice Behavior during Three
subjective desirability of both available actions wereBlocks of Inspection Game Trials

equal for both players under these conditions (Nash,The thick black line denotes the 20 trial running average of the
percentage of the risky option chosen by the subject. The horizontal 1950).
black lines denote the subject’s rate of choosing the risky option
predicted at the Nash equilibrium. The thin gray line denotes the Humans versus Computer
corresponding 20 trial running average of the percentage of the

Having quantified behavior when humans competedinspect option chosen by the opponent. The opponent’s predicted
against human opponents, we then employed a stan-rate of choosing the inspect option at Nash equilibrium was 50%

for all blocks of trials. The opponent’s costs of inspection were dardized computer “opponent” for the remainder of the
stepped sequentially from 0.5 to 0.9 to 0.3 across the three blocks experiments. In brief, the computer opponent entered
of trials; 150 trials/block. the subject’s history of choices into a reinforcement

learning algorithm to estimate the probability that the
subject would choose each of the two available options

creasing this variable encouraged the opponent to more on the upcoming trial. Using this estimate of the sub-
aggressively prevent exploitation of the risky option by ject’s choice probability, the computer then chose either
the subject. In contrast, when the cost of inspection to inspect or not inspect so as to maximize its own
variable was lowered, the opponent was less aggressive virtual reward (see Experimental Procedures for details).
in response to exploitation of the risky option by the Our goal was not to develop a computer opponent that
subject. The Nash formulation for our game thus pre- perfectly mimicked the behavior of human opponents.
dicts that a subjects’ response probability will be ad- Instead our goal was to develop a computer opponent
justed by the competitive interaction until the opponent that, like human opponents, elicited mixed strategy
counters the risky choice 50% of the time, regardless equilibrium behavior in subjects with associated re-
of the equilibrium level reached by the subjects. Critical sponse probabilities that were dependent on a free vari-
for the logic of this paper is that a mixed strategy equi- able that affected the computer opponent’s payoffs (Fig-
librium is a behavioral measure of an otherwise hid- ure 1A; variable I, cost of inspection). Standardizing the
den parameter—equivalence of subjective desirability opponent in this manner provided consistency from one
across available options. experimental session to another and allowed the behav-

ioral strategies to be compared across species.
Human subjects displayed mixed strategy behaviorHumans versus Humans

when competing against this computer algorithm, andDuring the first experiment, human subjects competed
manipulations of the algorithm payoffs with the cost ofagainst human opponents in a manual version of the
inspection variable changed the proportion of choicesinspection game (Figure 1B). Figure 2 shows a running
devoted to the risky option across blocks of trials (Figureaverage over the last 20 trials of the strategic choice
3A, red triangles) (ANOVA, d.f. � 4, F � 177, p � 0.0001,behaviors of a human subject (black) and human oppo-
n � 8 subjects). These results are consistent with sub-nent (gray). Across the three blocks of trials, the oppo-
jective desirability of both available actions being onnent’s cost of inspection was stepped from 0.5 to 0.9
average equal when subjects were at behavioral equilib-to 0.3, respectively. The percentage of risky choices
rium with the computer algorithm (Nash, 1950).predicted at the Nash equilibrium is represented by the

horizontal black lines (see Experimental Procedures,
Equations 4–6). The opponent was predicted to counter Monkeys versus Computer

We then trained monkeys to play an oculomotor versionrisky choices by choosing the inspect option 50% of
the time across all blocks of trials (see Experimental of the inspection game and assessed whether their be-

havior was comparable to that of human subjects whenProcedures, Equations 1–3). During the first and third
blocks, the subject’s behavior closely tracked the Nash competing against the same computer algorithm. In the

monkey experiments, thirsty animals competed for wa-equilibrium predictions as did the opponent’s behavior,
which approached a 50% inspect rate. Of course, the ter rewards rather than for money, and they indicated

their choices on each trial with a saccadic eye movementplayers’ rates of responding are not fixed to those pre-
dicted by the Nash equations. This is exemplified in the directed to one of two eccentric visual targets rather



Neuron
368

Figure 3. Influence of Changing the Oppo-
nent’s Cost of Inspection Variable on the Sub-
ject’s Response Rate and the Expected Value
of Choices

(A) Average choice behavior (�SEM) of hu-
man subjects competing against human op-
ponents (black) and human (red) and monkey
(blue) subjects competing against the com-
puter algorithm during inspection game trials.
Human versus human data: n � 5, 150 trials/
block. Human versus computer data: n � 8
subjects, 150 trials/block. Monkey data: n �

29 blocks of trials (13 blocks from monkey 1,
16 blocks from monkey 2), 100 � 14.3 SD

trials/block. The diagonal gray line denotes the predicted rates of responding at the Nash equilibrium.
(B) Relationship between expected value and choice behavior. The relative expected value of the risky choice plotted on the abscissa was
calculated as the product of the probability of receiving the reward for choosing the risky option and the magnitude of reward associated
with the risky option divided by the sum of the expected values of both the risky and certain options. Each datum point is calculated from
blocks of trials with a different cost of inspection. Note: Same data sets as Figure 3A except n � 3 for human versus human data. For the
first two experiments, the opponent’s choices were not saved and therefore the subject’s probability of receiving a reward could not
be calculated.

than with a button press (Figure 1C; see Experimental much of the deviation resulted from errors in the quanti-
tative Nash prediction that arise from our assumptionsProcedures for details). Animals were taught to perform

two types of trials. During inspection game trials, the about the equivalence of subjective and objective desir-
ability, the influence of block transitions, and the wellfixation point reappeared as yellow and subjects were

free to choose either the risky red target or the certain established observation that empirical behavior often
differs from normative behavior during strategic interac-green target. During instructed trials, if the fixation point

reappeared as red, then they received reward only if tions (Camerer, 2003). In this case, deviations from the
simple Nash predictions during the lowest cost of in-they chose the red target, and if the fixation point reap-

peared as green, they received reward only if they chose spection blocks are likely the result of asymmetries in
information regarding the opponent’s behavior inherentthe green target.

Figure 3A plots the average choice behavior of two in the inspection game. Subjects can only update their
estimate of the probability that the opponent will inspectmonkey subjects as the cost of inspection variable was

varied across blocks of inspection game trials (blue from payoffs associated with choosing the risky option.
When subjects choose the certain option they gain nosquares). The choice behavior of the monkeys varied

with the cost of inspection (ANOVA, d.f. � 4, F � 1095, information about the behavior of their opponent. Thus,
subjects may choose the risky option more often thanp � 0.0001, n � 29 blocks of trials from two monkeys).

Therefore, monkeys displayed mixed strategy behavior predicted during blocks with low costs of inspection
because there may be some advantage gained by ob-during the inspection game, suggesting that the subjec-

tive desirability of both options were equal on average taining a more accurate estimate of the opponent’s be-
havior. This classic trade off between exploiting a re-when at behavioral equilibrium.
source and exploring the possibility of better resources
elsewhere has been described previously (Sutton andComparison of Monkey and Human Choice

Behavior during Inspection Game Barto, 1998).
We were interested, however, in quantifying howThe choice behavior of humans and monkeys did not

differ when competing against the same computer algo- much subjective desirability differed from objective de-
sirability. Starting from the assumption that the subjec-rithm (Figure 3A; blue versus red; ANOVA, d.f. � 1, F �

5.27, p � 0.01). The choice behavior of both species tive desirabilities of the two actions are equal at equilib-
rium, we then sought to compare this to an objectivelyvaried in a similar way from that predicted by a simple

form of the Nash equations (diagonal line in Figure 3A) measured desirability of each action. We computed the
objective value of each action, a quantity known as ex-in which subjective and objective desirability were pre-

sumed to be equivalent (see Experimental Procedures, pected value, across blocks of trials (Figure 3B). Ex-
pected value is defined as the product of the probabilityEquations 4–6). Specifically, monkeys chose the certain

option more often than predicted by this set of equations of receiving a reward and the magnitude of that reward.
The probability of receiving a reward was always 100%in blocks for which the cost of inspection variable was

0.7 and 0.9, and both species chose the risky option for trials on which the subject selected the certain option
but varied across blocks with the opponent’s cost ofmore often than predicted when this variable was 0.1

and 0.3 (Student-Newman-Keuls test, p � 0.01). Al- inspection variable for risky trials (Table 1). Specifically,
we calculated the relative expected value of the riskythough, some of the observed deviations from the Nash

predictions were doubtless due to imperfections in the option as the expected value of the risky option divided
by the sum of the expected values of both the risky andcomputer algorithm (see Barraclough et al., 2004), it

should be noted that humans playing this opponent did certain options. Across blocks of inspection game trials,
the objective value of the risky option varied (p � 0.01)not differ significantly from humans playing other hu-

mans (ANOVA, d.f. � 1, F � 0.22, p � 0.05). More likely, when humans competed against human opponents
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Table 1. Reward Probability for Risky Responses across Different Cost of Inspection Blocks

Cost of inspection 0.1 0.3 0.5 0.7 0.9
Human versus human 31.85 � 7.1% 52.6% � 3.1% 61.0% � 0.7% 67.9% � 12.3% 85.1% � 4.9%
Human versus computer 26.6% � 1.3% 43.5% � 3.9% 56.4% � 5.6% 69.5% � 3.0% 81.3% � 3.7%
Monkey versus computer 30.2% � 2.0% 41.8% � 2.5% 54.0% � 2.5% 63.9% � 2.7% 78.2% � 2.2%

Reward probability � SEM.

(black) and when both humans (red) and monkeys (blue) appears similar to behavior in nonstrategic environ-
ments, but the underlying mechanisms that generatecompeted against the computer algorithm (p � 0.01).

This raises the question of whether neuronal activity in this aggregate behavior on a trial-by-trial basis are criti-
cally dynamic in a game theoretic setting.posterior parietal cortex tracked this objective measure

of desirability—expected value—which varied across To quantify the dynamic nature of games further, we
tested for unpredictability in subjects’ choice-by-choiceblocks of trials or subjective desirability, which is pre-

sumed to remain constant across blocks of trials. behavior during equilibrium play by performing a Markov
chain analysis on the choice behavior on blocks withEach data point in Figure 4A represents the average

of the ratio of choices devoted to each option as a a 0.5 cost of inspection. These were blocks in which
subjects chose the risky option approximately 50% offunction of the product of the ratio of rewarded trials

and the ratio of reward magnitudes. This is the classic the time. This analysis determined, for a given rate of
choosing an option, whether subjects repeated or alter-matching law plot of Herrnstein (1997). Note that under

these conditions behavior approached, but did not ob- nated their choices more often than would be expected
by a random process that did not depend on previoustain, the idealized matching law solution when humans

competed against human opponents (black circles) and choices. The strategic nature of this interaction makes
a perfectly random selection of action an optimal re-when both humans (red triangles) and monkeys (blue

squares) competed against the computer opponent. In sponse in these blocks when a player faces an efficient
opponent. When competing against the computer algo-aggregate, the subjects “overmatch” slightly; the slope

of the least square regression was 1.32 (black line), rithm, three out of eight humans showed behavior that
was significantly different from what would be predictedwhich is greater than a slope of 1 predicted by the

matching law (gray line). by a perfectly stochastic process when compared to
the previous trial (�2 test, p � 0.01). Two of these threeThe observation that there was overmatching in the

aggregate behavioral strategy, however, should not be subjects as well as one further subject showed behavior
that was significantly different from a purely stochasticread to suggest that the subjects necessarily used a

stationary matching-type strategy during this dynamic strategy when compared to the previous two trials. The
behavior of the two monkeys was slightly more stochas-conflict. Unlike during traditional matching-type psycho-

logical tasks, during mixed strategy games the oppo- tic than that of humans; behavior in 6 out of 47 blocks of
trials were significantly different from pure stochasticitynent’s behavior is dynamic and responds actively to the

subject’s choices. Figure 4B demonstrates this property when compared to the previous trial, and behavior in 8
out of 47 blocks was significantly different from stochas-during inspection game trials with the cost of inspection

variable set at 0.5. In response to the opponent’s tran- tic when compared to the previous two trials. In sum-
mary, the human and monkey behavior was imperfectsient shift to a high inspect rate, the subject decreased

his rate of choosing the risky option (first arrow). After with regard to unpredictability. This might, of course,
reflect a limitation intrinsic to our players or might reflecta brief lag, the opponent reacted to this change by

decreasing it’s inspect rate, which was then followed an inability of the computer opponent we designed to
sufficiently exploit nonrandom patterns in the behaviorby the subject again choosing the risky option more

frequently (second arrow). This example emphasizes the of our players (Glimcher, 2005). Existing evidence from
other monkey studies, however, does suggest that hadstrategic nature of game theoretic interactions. It can

be true that, in aggregate, behavior during these games our computer opponent been better able to identify pat-

Figure 4. The Influence of Strategic Oppo-
nent on Choice Behavior

(A) Matching law plot. Ratio of choices plotted
on the ordinate was calculated as the number
of risky choices divided by the number of
certain choices. On the abscissa, the ratio of
rewarded trials was calculated as the number
of rewarded risky trials divided by the number
of rewarded certain trials, and the ratio of
rewards was calculated as the magnitude of
the risky reward divided by the magnitude
of the certain reward. Both axes are plotted
in log coordinates. Each datum point repre-

sents averages from blocks with the same cost of inspection. Same data sets as Figure 3B. The best fit linear regression (black line) has a
slope of 1.32. The line of unity (gray) has a slope of 1.
(B) Dynamics of strategic interaction between monkey subject (black) and computer algorithm (gray). See text for details.
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Figure 5. LIP Activity Related to Response Direction

Data are shown during blocks of trials in which the cost of inspection was 0.5 and the monkey chose either the target in (black, risky target)
or opposite (gray, certain target) the neuron’s response field. (A) Individual neuron. Each raster represents the time of an extracellularly
recorded action potential, and each row of rasters represents action potentials from the last 20 trials of each response option. Triangles
represent the time of initiation of the saccade for each trial. Average firing rate is displayed as a poststimulus time histogram with 50 ms bin
widths for all trials during a block. The timing of the presentation of the fixation point (FP), risky target (Risky T), and certain target (Certain
T) are shown at the bottom of the panel. The six epochs during which neuronal activity was calculated for subsequent analyses are depicted
by the translucent gray bars. (B) Neuronal population activity (n � 52) of the same comparison as in (A). Note that the ordinate is half the
range of that in (A).

terns in the behavior of the subjects this might have Glimcher (1999). Second, whenever the animals are at
a mixed strategy equilibrium during the inspectionreduced the nonrandom component of the behavior we

observed during these particular blocks (Barraclough et game, the average firing rates of LIP neurons should be
fixed. This is because the average subjective desirabilityal., 2004).
of the responses are presumed to be equivalent (Nash,
1950), irrespective of the response probability, reward

Neuronal Activity magnitude, or reward probability of the available options
Basic Inspection Game at equilibrium. On a trial-by-trial basis, however, the
For these experiments, we studied 52 LIP neurons with mixed strategy equilibrium is presumed to be main-
a mixture of instructed and/or inspection game trials. tained by small fluctuations in the subjective desirability
Figure 5A plots the average response of a single LIP of each option around this fixed level caused by dynamic
neuron during inspection game trials as a function of interactions with the opponent. Therefore, the third pre-
whether or not the monkey decided to look at the red diction is that LIP activity will be correlated with these
risky target located in the neuronal response field (black) small fluctuations in subjective desirability on a trial-by-
or the green certain target located opposite the neuronal trial basis.
response field (gray). After the fixation point reappeared
as yellow, indicating an inspection game trial, neuronal
activity distinguished between trials that ended within or LIP Firing Rate Varies with Desirability

during Instructed Trialsopposite the neuronal response field. Overall, neuronal
activity became selective for movement direction for the To test the first prediction, desirability was manipulated

by changing the amount of liquid reward associatedpopulation of neurons before the fixation point indicated
whether it was an instructed or inspection game trial with the targets in two successive blocks composed

entirely of instructed trials while the probability of re-(Figure 5B; p � 0.01 for visual, delay, cue, and premotor
epochs, paired t test, n � 52). For the remainder of this sponding to the targets was maintained at 50%. The

first two blocks of trials in Figure 6A show a runningpaper, we restrict our analyses to trials directed into
the response fields of our neurons (Figures 5A and 5B, average of choice behavior (jagged black line) and neu-

ronal activity (gray dots) during the visual epoch underblack). Therefore, any differences in neuronal activity
cannot be attributed to sensory stimuli or movement these conditions. During the first block, a movement to

the red target in the neuron’s response field yieldedparameters that remain identical on every trial.
Below, we test three predictions of the hypothesis that twice as much reward (0.5 ml of water) as a movement

to the green target opposite the neuron’s response fieldthe activity of neurons in area LIP reflects the relative
subjective desirability of upcoming saccades. First, the (0.25 ml of water). During the second block of trials, the

payoffs associated with each target were reversed suchfiring rates of LIP neurons should vary with desirability
as it varies across blocks of trials in a nonstrategic set- that a movement to the red target in the neuron’s re-

sponse field yielded only half as much reward as theting. We tested this by varying the magnitude of reward
associated with each option across sequentially pre- green target opposite the neuron’s response field. Neu-

ronal firing rate was high during the large reward condi-sented blocks composed entirely of instructed trials.
This first prediction constitutes a replication of Platt and tion and low during the small reward condition. This
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Figure 6. Monkey’s Choice Behavior and
Corresponding Activity of LIP Neurons during
Instructed and Inspection Game Trials

Same neuron as in Figure 5A. (A) Two purely
instructed trial blocks (block 1, large 0.5 ml
reward into response field; block 2, small 0.25
ml reward into the response field) followed
by four blocks of inspection game trials. The
jagged black line denotes a 20 trial running
average of the percentage of saccades di-
rected to the target in the neuron’s response
field. The horizontal black lines denote the
predicted percentage of trials directed to the
target in the neuron’s response field either as
instructed by the color of the fixation point
(instructed trials) or by the Nash equilibrium
equations (inspection game trials). The gray
dots denote a 20 trial running average of the
firing rate during the visual epoch only for
those trials in which the animal chose the
target in the neuron’s response field. Be-
cause only those trials in which the monkey
looked into the response field were included,
this firing rate average is composed of more
observations during blocks when the monkey
chooses this option more often (e.g., block
5) than less often (e.g., block 4). (B) Average
activity of the cell in (A) throughout the dura-
tion of large (black) and small (gray) rewarded
blocks of instructed trials. Same conventions
as Figure 5A. (C) Population firing rate (n � 30)
during instructed trials. (D) Average activity of
the cell in (A) throughout the duration of four
blocks of inspection game trials with differ-
ent costs of inspection. The interleaved in-
structed trials were removed for this analysis.
(E) Population firing rate (n � 52) during five
blocks of inspection game trials in which
the opponent’s cost of inspection variable
ranged from 0.1 to 0.9. (Inset) Average choice
behavior associated with the five waveforms
in (E). Translucent gray bar in (B) and (D) de-
notes the visual epoch sampled in (A).

difference in firing rate occurred early during the trial, the relative subjective desirability of the two choices
presumably remained constant even as response prob-when there was uncertainty as to which target would

be rewarded, for both this individual neuron (Figure 6B) ability fluctuated across blocks of trials. Concomitant
neuronal activity remained relatively constant at a leveland our neuronal sample (Figure 6C; p � 0.01, paired t

test for visual and delay epochs, n � 30). After the fixa- between that observed for the high and low reward con-
ditions during instructed trials. This equivalence in firingtion point indicated that the target in the response field

would be rewarded, the firing rate of this individual neu- rate remained throughout the duration of the trial as
observed in the average firing rate of this neuron for eachron (Figure 6B) and our neuronal sample (Figure 6C) was

the same irrespective of the amount of reward associ- block of trials (Figure 6D). This was true even though the
objective expected value of this option changed fromated with the movement. The early difference in firing

rate could not be the result of visual stimuli, response block to block (Figure 3B). Unlike instructed trials, the
reappearance of the fixation point did not resolve theprobability, or movement direction because each of

these variables remained the same across both blocks uncertainty of whether the risky target would be re-
warded. Consistent with the hypothesis that these neu-of trials. Thus, the first prediction that LIP firing rates

vary with the desirability of saccades during the in- rons reflect the relative subjective desirability of the
structed task was fulfilled (see also Platt and Glimcher, available actions, the firing rate of the neuron during the
1999). cue and premotor epochs was less for inspection game

trials (Figure 6D) than for instructed trials (Figure 6B).
Next we examined 52 neurons (including 13 that wereLIP Firing Rate Constant at Behavioral Equilibrium

also studied in the instructed task) while animals playedduring Inspection Game Trials
five blocks of the inspection game in which their re-To test the second prediction, we changed the algo-
sponse probability varied as the algorithm’s cost of in-rithm’s cost of inspection variable across blocks of in-
spection variable ranged from 0.1 to 0.9 (Figure 6E, in-spection game trials while recording the activity of this

same neuron (Figure 6A, blocks 3–6). At equilibrium, set). LIP firing rates remained constant across the five
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Figure 7. Correlations between Individual LIP Activity and Response Probability

(A) The firing rate of an individual LIP neuron and response probability during inspection game trials. The small data points represent firing
rates on single trials, and the large data points represent the average firing rate (�SEM) for each block. The black lines represent the least
squares linear regressions fit to these data. The same plots were made for the instructed task (data not shown) in which the abscissa was
replaced with the relative magnitude of rewards for the large and small rewarded blocks.
(B) Histograms of correlation coefficients for the population obtained from the analyses in (A). Filled bars represent neurons with statistically
significant correlations (Fischer’s r to z test, p � 0.05) for inspection game (gray) and instructed (black) trials. Solid vertical lines represent
the average correlation coefficients for inspection game (gray) and instructed (black) trials. Those average correlations that differ significantly
from zero (dashed lines) are denoted with an asterisk (t test, p � 0.01).

blocks of trials (Figure 6E, p � 0.01, paired t test for all of these correlation coefficients differed from zero (black
lines) for the visual, delay, and cue epochs (p � 0.01).epochs, n � 52), thus fulfilling the second prediction

that LIP activity, like relative subjective desirability, is For a subset of 24 neurons, we examined the effects
of reversing the locations of risky and certain targetsequivalent at mixed strategy equilibriums.

At the Nash equilibrium, the relative subjective desir- during a block of trials in which the algorithm’s cost of
inspection variable was fixed at 0.5. Switching the targetability of options should remain equivalent regardless of

the response probability, reward magnitude, or reward in the response field from the risky to certain option
changed both the probability of reward (i.e., from �50%probability associated with those options. If LIP activity

reflects relative subjective desirability, then firing rates to 100%) and the magnitude of reward (i.e., from 2 objec-
tive units to 1 objective unit of reward), but accordingshould also remain constant at equilibrium despite ma-

nipulations of these variables. The relationship between to game theory, the relative subjective desirability of the
two options should have remained constant. Firing ratesthe firing rates of individual LIP neurons and response

probability is quantified in Figure 7. The top panels rep- should differ across the blocks if they reflect either the
probability or magnitude of reward but remain constantresent the trial-by-trial firing rate of a single LIP neuron
if they reflect the relative subjective desirability of theas a function of response probability for each epoch.
options. Firing rates remained constant, consistent withResponse probability is represented as the overall per-
the hypothesis that these neurons encode the relativecentage of saccades directed toward the risky target
subjective desirability of choices (Figure 8, p � 0.05,during a block of trials in which the algorithm’s cost of
paired t test, n � 24, for all six epochs).inspection was fixed. There is no significant correlation

between the firing rate of this neuron and response
probability for any epoch (Figure 7A). Although some LIP Firing Rate Correlated with Dynamic Estimate
individual neurons showed a significant correlation (Fig- of Relative Subjective Desirability
ure 7B, gray-filled histograms above the zero line, p � The third prediction was that LIP firing rates should be
0.05), the average correlation coefficients (gray lines) correlated to the small trial-by-trial fluctuations in the
did not vary from zero for any of the epochs tested relative subjective desirability of the choices resulting
(p � 0.01, Fischer’s r to z test). This same analysis was from the strategic interactions of the two opponents at
performed for LIP firing rates and the relative magnitude behavioral equilibrium. Casual inspection of the activity
of rewards across two blocks of instructed trials (data pattern of the neuron shown in Figure 6A during inspec-
not shown). As expected under these conditions, many tion game trials suggests it may have this character. Of
neurons showed a significant positive correlation during course, developing such a correlation is difficult be-
the epochs before the fixation point indicated which cause we do not know exactly how the subjective desir-
target would be rewarded (Figure 7B, black-filled histo- ability of the two movements is assessed on a trial-by-

trial basis by the animal. However, we attempted tograms below the zero line, p � 0.05) and the average
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the 48 neurons had a significant negative correlation
between these variables during the same epochs (p �
0.05). To ensure that this was not the result of a spurious
secondary correlation, we next performed a multiple
regression analysis that correlated firing rate with sac-
cade amplitude, peak velocity, latency, and the cost of
inspection variable. We then repeated our correlation
analysis on the residual variance that remained after
this multiple regression had been performed (Figure 9B,
relative desirability). During the inspection game trials,
none of these other individual regressions reached the
level of significance except the correlation between sac-
cade amplitude and firing rate during the postmotor
epoch (p � 0.05). The residual correlation between this
estimate of relative subjective desirability and firing rateFigure 8. Influence of Changing Reward Magnitude and Reward
remained significant during the visual, delay, and cueProbability on LIP Firing Rate
epochs (p � 0.05). Performing the same multiple regres-The target in the response fields was changed from the risky (black)
sion analysis on the instructed trial blocks showed thatto certain (gray) option across two blocks of the inspection game

when the opponent’s cost of inspection variable was fixed at 0.5. neuronal activity was also significantly correlated with
Switching targets changed both the probability and magnitude of a subjective desirability estimate under those conditions
reward while the relative subjective desirability of the target in the during the visual and cue epochs (data not shown, p �
response field remained unchanged. n � 24. 0.05). While we do not yet know how our monkeys deter-

mine the subjective desirability of each available option,
this crude estimate of that value on a trial-by-trial basis isderive a crude estimate of how the relative subjective
correlated with the trial-by-trial fluctuations in neuronaldesirability of choosing each option might fluctuate from
rate that we observed. Once again, this is exactly thetrial to trial and asked whether this estimate was corre-
observation one would expect if area LIP neurons reflectlated with the fluctuations in neuronal rate.
the relative subjective desirability of saccades.We therefore employed the algorithm developed for

use as the computer opponent to estimate how subjec-
tive desirability might be fluctuating from trial to trial. Encoding Relative versus Absolute

Subjective DesirabilityThe computer algorithm normally tracks the monkey’s
behavior and combines this with its own potential pay- Although our results have supported the notion that

neurons in area LIP represent the subjective desirabilityoffs to determine the desirability of inspecting and not
inspecting on the upcoming trial (see Experimental Pro- of saccades, they have not addressed whether this rep-

resentation is in absolute or relative terms. Nash (1950)cedures for details). We simply reversed the inputs to
this algorithm, having it analyze offline the choice behav- envisioned that the subjective desirability of each option

was represented in absolute terms and it was that optionior of the computer and the payoffs received by the
monkey throughout a block of trials to calculate the whose subjective desirability was highest that was sub-

sequently chosen. The neural instantiation of this in areasubjective desirability of choosing the risky option on
the upcoming trial. Finally, using the monkey’s behavior LIP would correspond to the firing rates of single neu-

rons being a function of the absolute subjective desir-recorded during the same experimental session, we per-
formed an optimization based on maximum likelihood ability of the option in their response fields. However,

subsequent behavioral studies (Herrnstein, 1961; Kah-methods on the variable � (see Experimental Proce-
dures, Equation 7) that determined the learning rate of neman and Tversky, 1979), coupled with our under-

standing of LIP physiology (Platt and Glimcher, 1999;the reinforcement learning algorithm. This optimization
successfully converged for 48 out of 52 neurons with a Gold and Shadlen, 2001), suggest that the subjective

desirability of options are represented in relative termsmean � of 0.27 � 0.13. This trial-by-trial estimate of the
relative subjective desirability of the two options was during decision making.

Therefore, we wished to explicitly test the hypothesisthen correlated to the trial-by-trial measurement of LIP
activity. Note that the presence of 20% interleaved in- that LIP neurons encode the relative subjective desir-

ability of actions rather than the absolute subjectivestructed trials were not ideal for this analysis, and al-
though far from a perfect solution, these trials were desirability of actions. Monkeys performed two blocks

of the inspection game in which the cost of inspectionsimply excluded.
To see how any such correlation evolved throughout variable was fixed at 0.5 and, therefore, responses were

typically divided equally between the risky and certainthe duration of a trial, we segregated each trial into six
sequential epochs. For this neuron, there was a positive targets. Standard magnitudes of reward were used for

one block of trials, whereas the magnitudes of rewardcorrelation between our estimate of relative subjective
desirability and firing rate for two of the four epochs were doubled for all targets in the other block. If LIP

activity is sensitive to the absolute subjective desirabilityduring which the targets were visible (Figure 9A, p �
0.05, Fisher’s r to z test, during visual and delay epochs). of the saccade in the neuron’s response field, the neu-

rons should fire more for the block of inspection gameOf our 48 analyzed neurons, 23 had a significant positive
correlation between these two variables during at least trials on which the rewards are doubled. If, however,

LIP activity is sensitive only to the relative subjectiveone of the epochs (p � 0.05). Conversely, only 6 of
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Figure 9. Correlation between LIP Firing Rates and an Estimate of the Relative Desirability of Choices

(A) Trial-by-trial correlations between firing rate and an estimate of relative desirability for each of the six epochs. Only inspection game trials
in which the movement was directed into the response field were included in this analysis and, thus, the sensory inputs and motor responses
were largely identical for each trial. Statistically significant least squares linear regressions (black lines) are denoted with an asterisk (p �

0.05, Fisher’s r to z test).
(B) Regression analysis for the population of neurons (n � 48) for the six epochs during the inspection game trials. The average slopes of the
regression lines of firing rates versus five behavioral parameters are shown. Because the range of the abscissa varies greatly between different
parameters, a comparison of the absolute value of the slopes for each of these parameters can be misleading. However, those values that
differed significantly from zero are denoted by an asterisk (p � 0.01), and this statistic is not influenced by the range of abscissa values.

desirability of choices inside compared to outside the and the basal ganglia participate in some classes of
decision making (Schall and Thompson, 1999; Hikosakaneuron’s response field, then firing rate should be
et al., 2000; Glimcher, 2003a). Typically these studiesroughly the same for both of these blocks of trials. Con-
have demonstrated that when the actual costs or bene-sistent with LIP encoding the relative subjective desir-
fits of an action are manipulated, the activity in brainability of saccades, there was no significant change in
areas associated with that action is also modulated.the firing rate of these neurons during this manipulation
Both humans and animals are known, however, to make(Figure 10, p � 0.05, paired t test, n � 22, for all six
decisions based on a subjective internal representationepochs).
of the costs and benefits of their actions rather than
based upon the actual costs or benefits of those actionsDiscussion
(Stephens and Krebs, 1986; Kreps, 1990; Kagel and
Roth, 1995; Krebs and Davies, 1996; Glimcher, 2003b).Over the course of the last decade, a number of re-
Neural correlates of these subjective internal represen-searchers have begun to develop evidence suggesting
tations of costs and benefits during decision making,that areas in the frontal cortex, posterior parietal cortex,
however, are rare.

In the Breiter et al. (2001) study, for example, human
subjects passively viewed a lottery. Although activity
in the sublenticular extended amygdala was correlated
with subjective evaluations of the desirability of out-
comes, or prospects, these evaluations did not influence
the outcome of the lottery. Similarly, Platt and Glimcher
(1999) had monkeys perform a task involving early un-
certainty about what eye movement would be rein-
forced, followed by an instructional cue that resolved
this uncertainty. Although parietal activity during this
early period was correlated with the actual values of the
two actions, the later instruction ultimately indicated
which saccade would be rewarded. Therefore, it was
equivocal whether this parietal activity would be in-
volved in decision making under free choice conditions.Figure 10. Relative versus Absolute Subjective Desirability
Other neurophysiological studies have employed dy-Data are shown only for trials in which saccades were directed into
namic reward contingencies to elicit more deliberate,neuronal response fields during blocks in which the algorithm’s cost

of inspection variable was fixed at 0.5. For both blocks of trials, the free choice behavior (Coe et al., 2002; Shima and Tanji,
risky target was located in the neuron’s response field. In one block 1998); however, there was no effort to gauge the subjec-
of trials, the standard reward magnitudes were used (gray), and, in tive desirability during these tasks.
the other block, reward magnitudes associated with both targets

In the experiment presented here, we examined a formwere doubled (black). This manipulation changed the absolute sub-
of free choice behavior that has been well studied injective desirability of the option in the response field while the rela-
humans, decision making during strategic conflict (Cam-tive subjective desirability of the target in the response field re-

mained unchanged. n � 22. erer, 2003). Our behavioral experiments indicate that
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rhesus monkeys produce behavior that is empirically is the finding that doubling the reward magnitude of
both options during the inspection game had no effectvery similar to the behavior produced by humans en-

gaged in the same strategic conflict. To gain access to on LIP firing rates given that this manipulation did not
change the relative subjective desirability of those op-the subjective desirability of the two options, we ex-

ploited the Nash equilibrium concept that contends that tions. If LIP activity encodes relative subjective desir-
ability, the prediction follows that firing rates shouldsubjective desirability is rendered equivalent by the stra-

tegic play of the two opponents. scale as a function of the number of available options.
For example, when faced with only one option (e.g.,We tested the hypothesis that LIP activity was corre-

lated with subjective desirability under a number of ex- a single target task) firing rates should approach the
maximum of a neuron’s dynamic range, when faced withperimental manipulations. First, we verified that neu-

ronal activity was modulated when the desirability of two equally desirable options (e.g., our inspection game)
firing rates should be roughly one-half of that maximum,the options was manipulated with reward magnitude

during an instructed task (Platt and Glimcher, 1999). and when faced with three equally desirable options
(e.g., rock-paper-scissors) firing rates should be roughlyWhen animal subjects were free to select either of two

options during the inspection game, we found that the one-third of that maximum. In this context it is interesting
to note that the average firing rate of the posterior pari-average neuronal activity remained constant like the

average subjective desirability at a Nash equilibrium. etal neurons we examined in the inspection game was
about 50 Hz. This evidence that the neuronal architec-Furthermore, trial-by-trial fluctuations in neuronal activ-

ity were correlated with our trial-by-trial estimate of sub- ture encodes the value of an action relative to the value
of other actions also accords well with studies whichjective desirability. Our results are not consistent with

the view that LIP activity encodes strictly the probability suggest that human decision making is almost always
based on relative values (cf. Kahneman and Tversky,or intention to make a saccade (Andersen and Buneo,

2002) because activity remained constant across blocks 1979).
of trials while response probability varied. Moreover, LIP
activity cannot encode strictly the probability of receiv- Function of Posterior Parietal Cortex
ing a reward or magnitude of reward associated with Over the course of the last two decades, a number of
a certain saccade (Platt and Glimcher, 1999) because hypotheses have been advanced as to the principle
neuronal activity remained unchanged whether a risky functions of the posterior parietal cortex. Studies in
large reward or smaller certain reward was in the neu- monkey suggest that the cluster of cortical subareas
ron’s response field. Finally, LIP cannot encode the ob- lining the intraparietal sulcus may participate in the allo-
jective expected value of saccades because we showed cation of attentional resources (Colby and Goldberg,
that the expected value of the risky target varied across 1999), the transformation of sensory data into coordi-
blocks of trials even though neuronal firing rates did nate frameworks appropriate for movement generation
not. Instead our findings are consistent with the hypoth- (Andersen et al., 1997), and the selection of movements

for execution (Andersen and Buneo, 2002). Importantly,esis that LIP neurons encode relative subjective desir-
these hypotheses are not necessarily mutually exclu-ability in a manner appropriate for selecting a course
sive; indeed they are computationally and behaviorallyof action.
interrelated. As a result, evidence examining the rela-Importantly, we also found that LIP activity was more
tionship between neuronal firing rates in these areastightly correlated with relative rather than absolute sub-
and these psychological processes might be expectedjective desirability. This study (Figure 6) and previous
to proceed in parallel. The results presented here sug-work out of our lab (Platt and Glimcher, 1999) has re-
gest a correlation between activity in area LIP and theported that the firing rates of neurons in area LIP are
psychological processes involved in decision making.correlated with the magnitude of reward yielded by the
Over the course of the last several decades there havemovement they encoded divided by the sum of all avail-
been several attempts to demonstrate that neural activ-able rewards; the neurons encoded the relative values
ity in a particular region is uniquely associated with a(in this limited sense) of the saccades with which they
single psychological process, even if that psychologicalwere associated. However, many previous investigators
process shares many features with other closely relatedhad informally varied the magnitude of reward delivered
processes. While there is little doubt that many psycho-during single target tasks and seen little or no effect
logical processes will prove to have separable neuralof that variation on LIP firing rates. These seemingly
bases, simply on the grounds of efficient neural codingincompatible results are, in fact, exactly what would be
(Barlow, 1961) we might expect to see an incompleteexpected if LIP activity encodes the relative subjective
neural segregation of psychological processes thatdesirability of saccades. Varying the magnitude of re-
share many informational features. Importantly, the re-ward in a single target task changes the absolute subjec-
sults here do not test the hypothesis that this patterntive desirability for the option in the response field but
of neural activations may also be related to the allocationthe relative subjective desirability remains unchanged
of attention. They merely indicate that activity in areabecause it is compared to the only available option,
LIP, which is anatomically tied to the saccade-generat-itself. In fact, LIP displays differential firing with different
ing circuitry itself (Platt et al., 2003), carries signals ap-reward magnitudes early during instructed trials, but the
propriate for saccade selection.activity becomes equivalent after the instruction indi-

cates which target will be rewarded, essentially chang-
ing a two target task into a one target task (Figures 6B Conclusion

Neurobiologists have been increasingly interested inand 6C) (see Basso and Wurtz, 1998, for similar result
in the superior colliculus). Also consistent with this view how the primate neural architecture produces voluntary
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as being most desirable on each trial. If both the subject and oppo-decisions but have been limited in their ability to bring
nent act rationally in this sense, then a behavioral equilibrium willthese behaviors into a laboratory setting. Previous neu-
be reached in which the average subjective desirability for eachrophysiological tasks have been unsatisfying in this re-
option is rendered equivalent for both players through their dynamic

gard because they required animal subjects to react in interaction. The available options and their associated payoffs will
a stereotyped manner to fixed stimuli or the animals be described first for the experimental subjects (or “employees” in

inspection game terminology) followed by those of the opponentwere free to make any response but received rewards
(or “employers” in inspection game terminology).for only one action. To study voluntary decision making

On each trial, the experimental subject was simply required toin nonhuman primates, therefore, requires tasks special-
choose either the certain option or the risky option (Figure 1A).ized for this class of decision making.
The certain option was guaranteed to yield the same small reward

Within the social sciences, game theory has become regardless of the opponent’s choice. The risky option yielded twice
a popular tool for the study of voluntary decision making. the magnitude of reward if the opponent did not inspect but yielded

zero reward if the opponent did inspect. Unless otherwise statedEconomists have argued that when humans make volun-
(i.e., Figure 10), the options available and their associated payoffstary decisions they do so by weighing the relative sub-
were the same for the subjects across all blocks of trials.jective desirability of the actions available to them. Dur-

Similarly, the subject’s opponent had to choose either the inspecting mixed strategy games, this results in unpredictable
option or the no inspect option on each trial. The payoffs associated

behavior from choice to choice and subjects self-report with inspecting were varied across blocks of trials by manipulating
that they have behaved in a volitional manner. Indeed, the cost of inspection variable (Figure 1A, variable I).

The normative rates of choosing each option at the Nash equilib-our human subjects reported this conviction when they
rium are outlined below. The subject’s rate of choosing the riskyplayed the inspection game in our laboratory. The simi-
option increases linearly with the opponent’s cost of inspectionlarity in behavioral data across species presented here
variable given the simplifying assumptions that the subjective desir-suggests that nonhuman primates provide a good model
ability of an option is the normative expected value of that option

for human decision makers under these conditions of (expected value � probability of receiving a reward � magnitude
strategic conflict. of reward), that block boundaries can be neglected, and that each

player can assume his opponent to be perfectly rational. Of course,While we cannot ask nonhuman primates to report
perfect linearity should not be expected in subjects’ actual behaviortheir subjective impressions of the decision making pro-
(e.g., Figure 3) for two principle reasons: (1) true subjective desirabil-cess during these experiments, the data described here
ity is known to vary from objective expected value, and (2) there aremay still shed light on the mechanisms of human volun-
asymmetries in information associated with the inspection game

tary decision making. The neural data presented here (see Results).
suggest that the neurons of area LIP encode the relative For the subject, at Nash equilibrium the subjective desirability for

choosing the certain option is equal to the subjective desirabilitysubjective desirability of saccadic eye movements. If
for choosing the risky option:human choices are guided by circuits involving neurons

like those in monkey area LIP, then it is tempting to
SD(certain) � SD(risky) (1)

speculate that the average firing rates of these neurons
may also encode the subjective desirability of actions which given the payoff matrix (Figure 1A) expands to
in humans. Furthermore, variations in these spike trains

p(inspect) � 0.5 � (1 	 p(inspect)) � 0.5 � p(inspect) � 0may be the source of unpredictability in decisions from
choice to choice which would be consistent with the � (1 	 p(inspect)) � 1 (2)
highly variable spike trains of cortical neurons (Dean,

solving for p(inspect)1981; Glimcher, 2005; Glimcher and Dorris, 2004; Tol-
hurst et al., 1981). Completely unanswered, however p(inspect) � 0.5 (3)
is a question central to game theory: how does this

where SD(certain) is the subjective desirability for choosing the cer-stochastically maintained equilibrium of neuronal activi-
tain option, SD(risky) is the subjective desirability for choosing theties give rise to game theoretic behavioral equilibriums
risky option, p(inspect) is the probability of the opponent choosingin which subjects mix two or more responses asymmet-
to inspect, and 1 	 p(inspect) is the probability of the opponent

rically? We can only speculate that future studies of choosing to not inspect when at equilibrium.
neuronal and behavioral dynamics during game play Similarly, for the opponent at Nash equilibrium the subjective

desirability for choosing the inspect option is equal to the subjectivemay provide insight into the mechanistic nature of the
desirability for choosing the not inspect option.volitional process.

SD(inspect) � SD(not inspect) (4)
Experimental Procedures

which given the payoff matrix (Figure 1A) expands to
Subjects played a repeated, mixed strategy, game theoretic task
known as the inspection game for either monetary (humans) or water p(risky) � (1 	 I) � (1 	 p(risky)) � (2 	 I) � p(risky) � 0
(monkeys) reward. All human procedures were approved by the New

� (1 	 p(risky)) � 2 (5)York University Committee on Activities Involving Human Subjects.
All monkey procedures were approved by the New York University

solving for p(risky)Animal Care and Use Committee and were in compliance with the
Public Health Service’s Guide for the Care and Use of Laboratory An-

p(risky) � I (6)
imals.

where p(risky) is the probability of the subject choosing the risky
option and 1 	 p(risky) is the probability of the subject choosingGeneral Behavioral Task

Subjects played the inspection game, whose general payoff matrix the certain option when at equilibrium. Across blocks of trials, I, the
opponent’s cost of inspection variable, was experimentally manipu-is shown in Figure 1A. On each trial, the subject’s payoff was deter-

mined by their own action and that of their opponent. It is assumed lated between 0.1 and 0.9 in steps of 0.2 with the intended effect of
changing the subject’s rate of choosing the risky option (Equation 6).that rational decision makers choose the option that they perceive
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Human Behavioral Task repexpected � (p(risky) � p(risky)) � ((1 	 p(risky))
Human subjects were required to choose with a computer mouse

� (1 	 p(risky))) (8)one of two buttons on a monitor that corresponded to either the
certain or the risky option (Figure 1B). Subjects were naive to the the difference in the repactual from repexpected was used to bias the
nature of the payoff matrix and were simply instructed to “make as computer’s estimate of p(risky) for the upcoming trial
much money as possible,” learning through trial and error. The pay-

p(risky)corrected � p(risky) � 
(repexpected 	 repactual) (9)off for each trial was presented in the center of the screen at the
end of each trial along with a cumulative total of earnings over the

in which 
 was set to 0.1.last ten trials. The first block of 50 trials was a practice session.
The variable p(risky)corrected represents an estimate of the probabilityAfterward, five separate blocks of 150 trials, each associated with

of the subject choosing the risky option given his past history ofa different cost of inspection, were played in a randomized order.
doing so and allows the algorithm to exploit dependencies of up-At the end of the session, subjects were paid their cumulative earn-
coming behavior on actions taken during the previous trial. Theings that depended on performance and were typically about $35
variable p(risky)corrected was substituted for p(risky) in calculating theUS. Subjects were not aware of the nature of their opponent, which
relative subjective desirability of inspecting and not inspecting oncould be either another human in a different room or a standardized
the upcoming trial which, in turn, was used to guide the opponent’s

computer algorithm (see below).
choice. In addition, an exploration bonus was added, which gradu-
ally increased as the algorithm continued to produce a single re-

Monkey Behavioral Task sponse. Because p(risky) was only updated after inspection trials—
Monkeys played the same computer algorithm as the human sub- and by extension so was the estimate of relative subjective
jects in an oculomotor version of the inspection game for water desirability as well—the exploration bonus was necessary so the
reward (Figure 1C). On each trial, the monkey began by looking at computer did not get stuck always choosing no inspect. Variations
a central yellow fixation point. Two targets were presented 300 ms of this exploration bonus are used for similar purposes by other
later: a red risky target in the center of the neuron’s response field reinforcement learning algorithms in an effort to strike a balance
and a green certain target at a position of equal eccentricity but in between exploring for potentially more desirable resources and ex-
the opposite direction from the fixation point. The fixation point was ploiting resources already available (Sutton and Barto, 1998).
extinguished for 500 ms and could reappear as one of three colors: The computer opponent would be deterministic if it always chose
yellow, red, or green. After 500 ms, the fixation point disappeared, the option with the highest desirability on every trial. If a subject
which was the cue for the monkey to indicate its choice with an eye had sufficient precision in a trial-by-trial estimate of their own
movement to one of the targets within 70–500 ms to obtain reward. p(risky), they could accurately predict the actions of the algorithm.
On 80% of the trials, the fixation point reappeared as yellow. On In order to incorporate stochasticity into the actions of the algorithm,
these inspection game trials, the monkey could voluntarily choose we employed a decision rule that converted relative subjective desir-
either target. On each of 10% of the remaining trials, the fixation ability into a response probability. When inspecting and not in-
point reappeared either as red or green. On these instructed trials, specting had equal subjective desirability, the decision rule ran-
the monkey was required to choose the target that matched the domly selected the inspect and no inspect options with equal
color of the fixation point; 2 units of reward were earned for red probability. As subjective desirability increased for one option over
instructed trials and 1 unit of reward for green instructed trials. another, the probability that the more desirable response would be
Although not entirely successful (i.e., Figure 5B), the intended pur- selected increased gradually.
pose of these interleaved instructed trials was to prevent the monkey
from fully deciding on a saccadic target until each trial was under- Neurophysiology
way. Otherwise, these instructed trials that were interleaved with In two monkeys, we recorded the activity of single neurons that were
inspection trials were not analyzed further. During some experimen- located in the lateral bank of the intraparietal sulci using standard
tal sessions, however, monkeys performed blocks composed solely electrophysiological techniques. The location of the neurons was
of instructed trials (e.g., Figures 6B and 6C). These instructed trials established using neuronal response properties and neurosonogra-
were analyzed to determine how the desirability of options affected phy (Glimcher et al., 2001; Platt and Glimcher, 1997). After isolation
LIP firing rates as it was experimentally manipulated by changing of a single neuron, animals were required to make a series of 50 to
the magnitude of reward associated with the options across blocks 100 eye movements beginning from a central fixation point and
of trials. directed to eccentric targets selected randomly from among several

hundred peripheral locations. The monkeys were trained to withhold
the eye movement to the eccentric target until the fixation pointComputer Opponent
was extinguished (500–800 ms after target presentation). We usedFor the majority of experiments, both human and monkey subjects
this delayed saccade task to identify the center of the neuronalcompeted against a standardized computer algorithm which played
response field, defined as the position of the eccentric target forthe role of the opponent (see http://www.cns.nyu.edu/�glimcher/
which the neuron was maximally active during the delay period.inspection_game/ for MATLAB code of the complete algorithm). In

To study the evolution of neuronal activity, we divided each trialbrief, the computer algorithm worked by tracking two variables of
into six epochs (Figure 5A): pre-target (300 ms before presentationthe subject’s behavior: (1) the history of the subject’s choices to
of targets), visual (50–350 ms after target presentation), delay (50–give an estimate of the overall p(risky), and (2) the subject’s repetition
350 ms after initial fixation point offset), cue (50–350 ms after fixationrate (repactual), that is, how often a subject repeated the response
point reappearance), pre-motor (0–150 ms after second fixationof the previous trial. The expected repetition rate (repexpected) was
point offset), and post-motor (350–500 ms after second fixation pointcalculated for a given p(risky) assuming the probability of a response
offset). Neurons were included in this study if, during inspectionon each trial was controlled by a random process independent of
game trials with a 0.5 cost of inspection, their activity: (1) was choiceprevious choices.
selective (activity was higher for trials into the response field thanThe computer updated its estimate of the probability of the subject
for movements opposite the response field during at least one epochchoosing the risky option on each trial using the following reinforce-
while the choice targets were present at p � 0.01 by paired t testment learning algorithm:
during visual, delay, cue, or pre-motor epochs), (2) increased with
the presentation of a target in the neuronal response field (therep(risky)t � 1 � p(risky)t � �(C 	 p(risky)t) (7)
was a significant increase in activity 50–150 ms after the targets

where t is the current trial. If the subject chose the risky option on were presented compared to the 150 ms before the targets were
the current trial, C � 1. If the subject chose the certain option on presented at p � 0.01 by paired t test).
the current trial, C � 0. �, which determined the rate of learning, was
set to 0.1 during game play. The iterative nature of this reinforcement Acknowledgments
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