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SUMMARY

Choosing the most valuable course of action requires
knowing the outcomes associated with the available
alternatives. The striatum may be important for rep-
resenting the values of actions. We examined this in
monkeys performing an oculomotor choice task.
The activity of phasically active neurons (PANs) in
the striatum covaried with two classes of information:
action-values and chosen-values. Action-value PANs
were correlated with value estimates for one of the
available actions, and these signals were frequently
observed before movement execution. Chosen-
value PANs were correlated with the value of the ac-
tion that had been chosen, and these signals were
primarily observed later in the task, immediately be-
fore or persistently after movement execution. These
populations may serve distinct functions mediated
by the striatum: some PANs may participate in choice
by encoding the values of the available actions, while
other PANs may participate in evaluative updating by
encoding the reward value of chosen actions.

INTRODUCTION

Neural activity in a number of brain areas is related to the values

of rewards that humans or animals gain, as well as the choices

they make using their estimates of these values (Schultz, 2000;

Sugrue et al., 2005; Daw and Doya, 2006). A growing body of ev-

idence suggests that the basal ganglia is important for maintain-

ing value representations to guide actions (Hikosaka et al., 2006).

Phasically active neurons (PANs) in the dorsal striatum can be

modulated by reward properties (Cromwell and Schultz, 2003;

Hassani et al., 2001) and by changes in reward contingencies

(Kawagoe et al., 1998; Lauwereyns et al., 2002a) as well as asso-

ciation learning (Barnes et al., 2005; Pasupathy and Miller, 2005;

Tremblay et al., 1998; Williams and Eskandar, 2006), and they

respond in a manner consistent with a role in biasing actions

(Lauwereyns et al., 2002b; Watanabe et al., 2003; Samejima

et al., 2005). These data suggest that striatal PANs promote

the selection of valuable actions by modulating activity in the

thalamus and midbrain.

However, in the oculomotor caudate, a nucleus of the stria-

tum, it is not known how the activity of PANs reflects the values
of actions during choice behavior. Simultaneous measurements

of striatal activity and estimates of subjective values would thus

be useful for testing whether PANs encode a subject’s estimates

of the values of actions. In addition, such measurements would

allow us to more precisely define the types of value-related infor-

mation these neurons encode. PANs could, for example, encode

action-values, the values associated with potential actions.

Basal ganglia models often posit that striatal PANs encode a

quantity like action-value that biases the selection of actions as-

sociated with more valuable outcomes (Doya, 2000). Alterna-

tively, striatal PANs could encode chosen-values, the value

of the option the decision-maker selects (Morris et al., 2006;

Padoa-Schioppa and Assad, 2006). A neuron encoding cho-

sen-value cannot support action selection because its activity

is contingent on the action ultimately executed. Chosen-value

representations may be useful for evaluating the outcomes of

actions to promote learning (Morris et al., 2006; Niv et al.,

2006; Sutton and Barto, 1998) or modifying movements to reflect

the value of the action (e.g., reaction time). Do PANs in the ocu-

lomotor caudate reflect one or both of these value representa-

tions when animals choose among actions associated with

changing reward values?

To answer this question, we recorded from PANs in the oculo-

motor caudate while monkeys performed a choice task that

elicited matching behavior (Herrnstein, 1961). We estimated

the action-values and chosen-values associated with each ac-

tion both at the level of the sequential blocks of trials presented

to the monkeys as well as at the level of individual choices and

used these estimates to determine whether PANs tracked

action-values or chosen-values. We found that the activity of

a significant number of PANs was correlated with action-values

and that the activity of a second group of PANs was correlated

with chosen-values. Action-value-related activity was more

prominent prior to movement execution, while chosen-value-

related activity was more prominent following movement execu-

tion. These results support the idea that some striatal neurons

bias action selection and provide evidence that a second novel

group of striatal neurons may have an evaluative role, reporting

the reward values associated with chosen actions.

RESULTS

We recorded from PANs in the caudate nucleus of monkeys per-

forming an oculomotor choice task where the values of the two

available alternatives varied (Figure 1A). The choice task was
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Figure 1. Matching Task and Behavior

(A) On each trial, monkeys chose between two al-

ternatives by shifting gaze to one of two peripheral

targets. Rewards were delivered probabilistically,

with one alternative yielding a larger reward than

the other in each block. Reward contingencies

were constant over blocks of trials and switched

unpredictably between blocks.

(B) Monkeys allocate choices according to the

relative magnitude of the available alternatives

(mean ± 1 SD). The data points represent an aver-

age across sessions and monkeys. The four data

points correspond to the four reward ratios used.

(C) Stable choice behavior emerges quickly fol-

lowing transitions to different ratios. Choice be-

havior from both monkeys was aligned on the trial

that the first reward after a block transition was ob-

tained (smoothed with a five-point moving aver-

age). The data were compiled across sessions

with respect to the alternative associated with

the larger reward following the transition and aver-

aged separately for the different posttransition ra-

tios (3:1 is averaged together with 1:3 and 3:2 is

averaged together with 2:3). The horizontal lines il-

lustrate strict matching behavior (Herrnstein,

1961).
based on the concurrent variable-interval schedules used to

study Herrnstein’s matching law (Herrnstein, 1961), which de-

scribes how many animals, including humans, choose among al-

ternatives that differ in value (Davison and McCarthy, 1988; Wil-

liams, 1988). Monkeys allocate their choices in proportion to the

relative probability or magnitude of rewards in this type of task

(Corrado et al., 2005; Lau and Glimcher, 2005). Here, we varied

the relative magnitude of rewards in blocks of roughly 130 trials

while keeping the average probabilities of reward for each alter-

native equal. Once a reward was arranged for an alternative, it re-

mained available until it was next chosen, similar to the reinforce-

ment schedules used to elicit matching behavior in free operant

experiments (Nevin, 1969). We found that monkeys matched

their choices to the relative magnitude of rewards obtained

from each alternative (Figure 1B). Moreover, their choice behav-

ior following transitions to different relative magnitudes of reward

quickly stabilized (Figure 1C). These results contrast with the

behavior animals exhibit under variable-ratio schedules, where

rewards are not held between choices; under those contin-

gencies, animals often learn to exclusively choose the better al-

ternative, with little or no variation in relative choice as a function

of the relative value of that alternative (Herrnstein and Vaughan,

1980; Samejima et al., 2005). That choice was lawfully related to

relative reward magnitude during matching indicates that the

monkeys acquired and maintained information about the conse-

quences of their actions. This is consistent with the idea that their

choices were based on the relative values they placed on the two

actions.

We hypothesized that caudate PANs encode the values asso-

ciated with specific actions. However, a correlation between

neuronal activity and value does not necessarily mean that a neu-

ron participates in the action selection. Identifying neurons that
452 Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc.
could be related to action selection requires distinguishing

between what we term action-value and chosen-value. The dif-

ference between these two value representations is illustrated

in Figure 2A. Action-values represent the potential outcomes

available to the decision-maker and can be used to select ac-

tions associated with these outcomes. Chosen-values cannot

support action selection because they do not unambiguously re-

flect the value of one of the available actions. However, neurons

encoding chosen-values may be useful for both evaluating and

executing chosen actions. Hypothetical responses of action-

value or chosen-value neurons are illustrated in Figure 2B, where

the responses are separated by the action chosen and whether

the contralateral action-value was greater than the ipsilateral

action-value. Action-value neurons reflect the value associated

with a particular action irrespective of which action is selected.

Chosen-value neurons, on the other hand, reflect the reward

value associated with the selected action. Padoa-Schioppa

and Assad (2006) first noted chosen-value activity in the orbito-

frontal cortex (OFC), where they found that OFC chosen-value

neurons encoded the chosen-value of whichever option was

selected. It is important to note that the fundamental property

of chosen-value activity is value sensitivity that depends on

choice. Thus, the hypothetical chosen-value neuron illustrated

in Figure 2B is only one of the possible types of chosen-value

neuron. For example, another chosen-value neuron might re-

spond most for contralateral choices only when that action

is most valuable (high response in upper-left quadrant) but be

insensitive to the value of the ipsilateral target when it is chosen

(low response in all other quadrants). Both because movement

selectivity is common in the caudate nucleus and because

we had no a priori reason to exclude the possibility that different

types of chosen-value neurons might occur, we tested the
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possibility that different types of chosen-value neurons might be

found in the striatum.

Relating Caudate Activity to Blockwise Estimates
of Value
We used the programmed reward magnitudes set by the rein-

forcement schedule to generate estimates of the chosen-values

and action-values for each session (Figure 2A), which we refer to

as blockwise value estimates. Although these value estimates do

not vary from trial to trial as the animals’ internal estimates prob-

ably do, they have the advantage of being essentially model free.

Individual PANs were active at idiosyncratic and highly repeat-

able times during each trial (Hikosaka et al., 1989a, 1989b; Lau

and Glimcher, 2007). To analyze this activity, we identified the

time of peak activity for each neuron and used the first times

to half-maximal response preceding and following this peak to

define an analysis window. We used multiple linear regression

including blockwise value estimates as covariates to categorize

individual neurons into three exclusive populations: (1) nonvalue,

(2) action-value, or (3) chosen-value. We also refer to nonvalue

neurons that responded differentially according to movement

direction as choice-only (Figure 2B).

Example neurons categorized as action-value and chosen-

value are plotted in Figures 3A–3D. For each category, the firing

rates for two example PANs are plotted in each row, sorted by

chosen action and whether the contralateral action-value was

greater than the ipsilateral action-value. Both example action-

Figure 2. Value Representations and Neu-

ronal Categories

(A) The top panel shows a segment of actual

behavior, including a block transition. The red

and green points indicate individual choices to

the contralateral and ipsilateral alternatives, re-

spectively. The value of each point on the ordinate

indicates the magnitude of the obtained rewards.

Because rewards were delivered probabilistically,

there are frequently trials that are not rewarded.

The middle panel illustrates value representations

inferred from average behavior. Plotted are block-

wise estimates of action-values and chosen-

values corresponding to the choice behavior

shown in the top panel.

(B) Exemplars of hypothesized neuron types. Note

that the figure illustrates only one type of chosen-

value neuron (see text for details).

value neurons are more active when the

reward associated with the contralateral

target is larger than that associated with

the ipsilateral target; however, the neuron

in Figure 3A exhibits this difference before

the onset of the choice cues, whereas the

neuron in Figure 3B exhibits this differ-

ence after the onset of the choice cues.

The two example chosen-value neurons

(Figures 3C and 3D) are more active

when the ipsilateral target is chosen and

that target is associated with the larger

reward. In contrast to action-value neurons, the neuron in

Figure 3C is also more active when the contralateral target is

chosen and that target is associated with the larger reward;

this neuron reflects the value of whichever action was selected.

The neuron in Figure 3D also differs from action-value neurons;

its activity reflects the value of the ipsilateral action when it is

chosen (p < 0.05, t test) but does not reflect value when the con-

tralateral action is chosen (p > 0.10, t test). Figures 3E and 3F dis-

play neurons that were direction selective (p < 0.05, F test) but

not value sensitive (p > 0.05, t test). The examples in Figures

3A–3D show that different neurons can encode value at different

points in a trial, from before cue presentation to after saccade

execution. They are also representative in illustrating that neu-

rons sensitive to value can exhibit additive changes in firing

rate due to choice (Figure 3B).

We included a number of additional covariates in our regres-

sion analysis to protect against potential confounds: the direc-

tion, latency, and speed of movements (Itoh et al., 2003; Wata-

nabe et al., 2003) as well as reward outcome (Apicella et al.,

1991; Hikosaka et al., 1989b). The parameters for these addi-

tional covariates were estimated alongside the value covariates

and summarized in Table 1. A significant number of PANs en-

coded information about choice (i.e., movement direction) and

obtained reward in addition to value (Table 1).

We found that 62% of task-related PANs covaried significantly

with action-value or chosen-value (p < 0.05, F test). To summa-

rize the regression analysis and examine how substantially value
Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc. 453
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influenced neuronal activity, we quantified the magnitude of fir-

ing rate changes due to changes in value. For each neuron, we

subtracted from the raw firing rate on each trial the predicted ef-

fect due to all variables except value. This partial residual isolates

the effect of value on firing rate by holding constant the effects

due to all other covariates. We then averaged the partial resid-

uals across trials and neurons for each category. Because neu-

rons could increase or decrease firing rates in response to value,

we altered the sign of the effect for each neuron so that the mean

effect for all neurons increased for increasing contralateral value.

To facilitate comparisons with hypothetical responses (Fig-

ure 2B), we computed separate averages according to the cho-

sen action as well as to whether the contralateral action-value

was greater than the ipsilateral action-value (Figure 4A). Fig-

ure 4A also shows the mean effects for nonvalue neurons, further

separated into choice-only neurons (partial residuals computed

for choice rather than value) and neurons that did not respond

differentially to choice (partial residuals computed for value).

The choice-only neurons are a useful reference because some

PANs respond selectively during saccade execution; the quad-

rant plot in Figure 4A shows a contralateral bias in these neurons,

which has been observed in the caudate (Hikosaka et al., 1989a),

and provides a scale against which the effects of value can be

compared. At the population level, blockwise variations in reward

value change firing rates by approximately the same amount as

changes in firing rate due to different saccade directions. These

results indicate that a significant number of PANs were correlated

with the reward value associated with particular actions.

Figure 3. Example Neurons from the Cate-

gories Illustrated in Figure 2

(A and B) Action-value neurons (Gaussian smooth-

ing s = 62 ms and 23 ms). (C and D) Two types of

chosen-value neuron: one that is sensitive to the

reward associated with both actions and the other

sensitive to the reward associated with only one

action when it is chosen (s = 42 ms and 63 ms).

(E and F) Choice-only neurons (s = 47 ms and

48 ms). The plots are spike-density functions

(mean ± 1 SEM) sorted according to two factors:

choice (movement direction) and relative action-

value. Reward onset is denoted by r and was

a fixed time relative to saccade completion. Cue

onset is denoted by c and is the average cue onset

time relative to saccade completion.

To further explore the differences

between action-value and chosen-value

neurons we examined the partial resid-

uals for individual neurons in each cate-

gory. We computed an index based on

the mean effects used to generate the av-

erage quadrant plots in Figure 4A by sum-

ming the absolute values of the row-wise

differences of the quadrant plot for each

neuron. This is a simple summary of the

column asymmetry of the quadrant plot

for each neuron, which reflects the de-

gree to which a neuron with value sensi-

tivity exhibits a dependence on the chosen action. Action-value

neurons should produce column asymmetry indices close to

zero, whereas chosen-value neurons should produce column

asymmetry indices greater than zero (Figure 2B). Note, however,

that it is possible for chosen-value neurons to exhibit smaller

asymmetry indices for weaker correlations with chosen-value.

Figure 4B displays the asymmetry index for each neuron sepa-

rated by value representation. The distributions for action-value

neurons and chosen-value neurons show relatively little overlap,

supporting the distinction between these value representations.

Also illustrated in Figure 4B are those chosen-value neurons that

had significant coefficients for both chosen-values. We found

that, unlike neurons in the OFC (Padoa-Schioppa and Assad,

2006), 58% (15/26) of chosen-value PANs in the caudate were

significantly correlated with the chosen-value of only one action,

while the remaining 42% (11/26) were significantly correlated

Table 1. Regression Summary Broken Down by Value

Representation

Total Choice

Reaction

Time

Peak

Velocity

Obtained

Reward

Action-value 36 31 (86%) 11 (31%) 13 (36%) 9 (25%)

Chosen-value 26 12 (46%) 7 (27%) 2 (8%) 13 (50%)

Nonvalue 38 29 (76%) 9 (24%) 6 (15%) 12 (31%)

100 72 27 21 34

The percentages listed in parentheses are relative to the row total.

Significance level is 0.05.
454 Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc.
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with the chosen-values of both actions (p < 0.05, t test for both

chosen-values). Thus, chosen-value PANs in the caudate are

not homogeneous, although both of these types of chosen-value

neuron are distinct from action-value neurons.

Relating Caudate Activity to Trial-by-Trial Estimates
of Value
In the analysis above, we used the blockwise reward magnitudes

to approximate the monkeys’ internal value estimates. While

simple, this approach has two limitations: (1) it ignores the

behavioral dynamics that occur within a block, and (2) while it al-

lows us to identify action-value neurons, we cannot distinguish

positive covariation with the contralateral action-value from neg-

ative covariation with the ipsilateral action-value. This ambiguity

arises because the two reward magnitudes available to the mon-

keys in each block summed to a constant value by design in our

experiment (see Experimental Procedures). We addressed both

of these limitations by developing trial-by-trial estimates of the

subjects’ internal valuations for each action from the monkeys’

choice behavior. To accomplish this, we fit a reinforcement

learning model to choice behavior to generate dynamic value es-

timates for each action (cf. Barraclough et al., 2004; Dorris and

Glimcher, 2004; Sugrue et al., 2004; Samejima et al., 2005).

We used these estimates to further explore the categorization

we arrived at using the blockwise value estimates described

above and to extend our observations by examining whether

action-value and chosen-value neurons covary with value esti-

mates on a trial-by-trial basis.

Our behavioral model had three terms (Lau and Glimcher,

2005): (1) a linearly weighted sum of past rewards, (2) the magni-

tude of each of the currently available rewards, and (3) a linearly

weighted sum of past choices. We have shown that this model

accurately captures fluctuations in behavior driven by stochastic

reward delivery in our matching task (Lau and Glimcher, 2005).

The function of the first term is to identify the weight a subject

places on each previous reward as a function of how long ago

Figure 4. Population Summary of Value

Sensitivity

(A) Mean effect averaged for different neuronal

categories. The radius of each symbol is propor-

tional to the mean effect listed in the corner of

each quadrant in each plot (in units of spikes/s).

(B) Asymmetry index for individual action-value

and chosen value neurons. This index is calcu-

lated by summing the absolute values of the

row-wise differences of the quadrant plot for

each neuron. Each tick represents one neuron (jit-

tered vertically for visibility), and the triangles indi-

cate the median for each distribution. The dashed

ticks indicate those chosen-value neurons that re-

flected the chosen-values of both actions.

that reward was received. In practice,

we have found that this linear weighting

function on rewards takes an exponen-

tially decaying form with recent rewards

most strongly influencing current value

estimates. This is what would be expected if the monkeys

used a simple prediction-error learning rule to estimate the value

of each alternative (e.g., Bayer and Glimcher, 2005). The second

term simply encodes the magnitude of the rewards available in

each block of trials and allows the model to predict a simple

bias (across the block) for the action associated with a larger re-

ward. The third term captures the influence of previous choices

on a current choice. In practice, this linear weighting on past

choices captures features like the strong tendency of monkeys

to alternate actions independent of rewards. Importantly, incor-

porating past choices into our behavioral model allowed us to

accurately estimate the behavioral influence of past rewards

and currently available rewards. Furthermore, we are able to

separate the behavioral effects of reward value (first two model

terms) from those of past choices (third term), which allowed

us to test the hypothesis that PANs encode the dynamic ac-

tion-values and chosen-values associated with the available

choice alternatives.

We used the coefficients from this behavioral model related

to reward value (the first two terms described in the preceding

paragraph)—fit separately to the choice data pooled across

sessions for each monkey—to generate dynamic reward-value

estimates associated with each alternative (Figure 5A). These

estimates represent the fluctuating subjective preferences of

the monkeys due to stochastic rewards and are directly related

to the probability that the subject will make a particular choice

on each trial. In a manner similar to the blockwise value estimate

analysis described above, we constructed dynamic action-

values and dynamic chosen-values for each alternative. We

then performed a second regression for each neuron of the

type described in the previous section, where we used the

trial-by-trial estimates of action-value and chosen-value instead

of the blockwise estimates (see Experimental Procedures). We

used the neuronal categorizations from the blockwise analysis

above to determine whether to correlate the activity of a particu-

lar neuron with dynamic estimates of action-value or chosen-

value. Because we did not intentionally decouple blockwise
Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc. 455
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values from dynamic values, these value estimates were strongly

correlated, which means we are unable to determine whether

dynamic values can produce fundamentally different categoriza-

tions of striatal neurons. Therefore, the following analysis is con-

ditional on our categorization using blockwise values, which do

not depend on a trial-by-trial behavioral model.

Two example neurons, one action-value and one chosen-

value, are shown in Figures 5B and 5C. For each neuron, the par-

tial residuals for value are plotted against the dynamic value

estimates for each action, separated by chosen action. The dis-

tinction between action-value and chosen-value made previ-

ously applies here; action-value neurons reflect the value of

a particular action irrespective of the chosen action, whereas

chosen-value neurons exhibit value sensitivity that depends on

the action selected. The action-value neuron in Figure 5B is sig-

nificantly correlated with the contralateral action-value (left

panel) but not the ipsilateral action-value (right panel). Impor-

tantly, a correlation with contralateral action-value exists for

both ipsilateral and contralateral choices. The activity of the

chosen-value neuron in Figure 5C is plotted as a function of

action-values rather than chosen-values to better illustrate the

difference between these value representations. Because cho-

sen-values are equal to action-values when a particular action

is chosen (and zero otherwise), chosen-value neurons will only

Figure 5. Caudate Neurons Are Correlated with

Dynamically Estimated Values

(A) Trial-by-trial action-value estimates corresponding to the

example behavior illustrated in Figure 2A. These estimates

are plotted in units of log-odds (left axis), which is logarithm

of the ratio formed by probability of choosing one action di-

vided by the probability of choosing the alternative action.

The programmed reward magnitudes are plotted as lighter

lines (right axis).

(B) Example action-value neuron. The left and right panels plot

the effect of changes in contralateral and ipsilateral action-

values on firing rate, respectively, after subtracting the effects

due to other regression variables (see Experimental Proce-

dures). The symbols distinguish choices to each alternative;

on the left, the red points extend further along the abscissa be-

cause the monkey more often chose the contralateral alterna-

tive when its value was high (vice versa for the green points on

the right panel). The black lines illustrate the slope predicted

from the regression analysis using dynamic values generated

by a behavioral model. Slopes for the separate choices are

1.71 (contra) and 1.85 (ipsi) for the left panel and�0.14 (contra)

and �0.05 (ipsi) for the right panel.

(C) Example chosen-value neuron, conventions as in (B).

Slopes for the separate choices are 10.3 (contra) and 0.79

(ipsi) for the left panel and 0.69 (contra) and 6.62 (ipsi) for the

right panel.

exhibit sensitivity for the action-value associated

with the action chosen. Thus, in Figure 5C, activity

positively covaries with contralateral value when it

is chosen (red points in the left panel) but is not sen-

sitive to contralateral action-value when the ipsilat-

eral target is chosen (green Xs in the left panel).

Instead, activity when the ipsilateral target is cho-

sen positively covaries with ipsilateral value (green

Xs in the right panel) and not with action-value when the contra-

lateral target is chosen (red points in the right panel).

Across PANs, the results using dynamic value estimates are

consistent with the categorization obtained using blockwise

value estimates. The great majority of action-value neurons iden-

tified by our blockwise analysis (86%, 31/36) significantly co-

varied with dynamic action-values (p < 0.05, t test). Importantly,

because the dynamic action-values do not sum to a constant

due to stochastic variations in reward delivery (Figure 5A), we

were able to identify whether individual neurons responded to

the value associated with a particular action. We found that

81% (25/31) of these action-value neurons selectively repre-

sented the value associated with only one action (p < 0.05 for

only one action-value, t test), similar to the example in Figure 5B.

For these neurons, we defined the preferred action-value as

whichever was significant. The remaining six action-value neu-

rons had significant coefficients for both action-values (for four

neurons one coefficient was roughly twice as large as the other

but of the same sign, two neurons had coefficients of opposing

sign); for these neurons, we defined the preferred action-value

as whichever had the larger absolute coefficient. We found

that 61% (19/31) of action-value neurons preferred contralateral

action-values, while the remainder preferred ipsilateral action-

values (not different from 50%, p > 0.10, binomial test). Individual
456 Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc.
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neurons either increased or decreased their responses accord-

ing to action-value, and we observed that 65% of action-value

neurons increased firing rate for the preferred action-value, while

the remainder decreased firing rate (not different from 50%,

p > 0.10, binomial test).

We found that 85% (22/26) of chosen-value neurons signifi-

cantly covaried with dynamic chosen-values (p < 0.05, t test).

More of these neurons (77%, 17/22) significantly covaried with

the value associated with only one particular action (p < 0.05

for either chosen-value, t test), for example, the chosen-value

neurons in Figure 3. The remaining five neurons significantly co-

varied with both chosen-values (p < 0.05 for both chosen-values,

t test), for example, the chosen-value neuron in Figure 5C. The

majority (77%, 17/22) of chosen-value neurons preferred contra-

lateral chosen-values while the remainder preferred ipsilateral

chosen-values (significantly different from 50%, p < 0.05, bino-

mial test). We observed that 55% of chosen-value neurons

increased firing rate for the preferred chosen-value, while the re-

mainder decreased firing rate (not different from 50%, p > 0.10,

binomial test).

Figure 6. Population Summary of Value Encoding

(A) Action-value.

(B) Chosen-value.

(C) Nonvalue.

Each row represents the mean effects of changes in action-

value on firing rates, binned and averaged over all trials and

all neurons for each category (mean ± 1 SEM). The averages

were constructed with respect to the preferred action-value,

which was defined as the alternative for which the absolute

value coefficient was largest. The black line in each panel is

the median value coefficient for the corresponding panel.

A population summary is plotted in Figure 6,

where each row represents the mean effect of

dynamic value on firing rate, averaged over neu-

rons within a category. Before averaging, the effect

for those neurons with negative value coefficients

was sign-reversed so that all the data are pre-

sented as positive increases in firing rate with in-

creasing preferred value. Figure 6 shows that there

is a robust encoding of dynamic value across our

population of PANs for firing rate changes associ-

ated with the preferred dynamic value for both

action-value and chosen-value neurons, and the

data agree with the slope predicted by the regres-

sion coefficients for the preferred value (black

line = median coefficient from the dynamic value

regression). The relationship appears less clear

for chosen-value neurons as a function of the non-

preferred value (right panel, middle row), a feature

that arises in the plot from the fact that there is

more than one type of chosen-value neuron. The

left panel of Figure 6B displays the mean effect as

a function of the preferred action-value. Because

most of the chosen-value neurons reflect the

dynamic value for only one choice, and we aligned

the data to the preferred action-value in the left

panel, this is reflected in a clearer mean effect across the popu-

lation as a function of the preferred action-value. The right panel

of Figure 6B displays the mean effect as a function of the nonpre-

ferred action-value. Again, because the bulk of caudate chosen-

value neurons reflect the value for only one choice, this is re-

flected in a smaller mean effect across the population in the

right panel.

The results presented so far are consistent with the idea that

PAN activity tracks value fluctuations due to stochastic reward

delivery. However, because the dynamic value estimates are lin-

early weighted versions of past and currently available rewards,

they are inherently correlated with the blockwise value esti-

mates. Thus, demonstrating trial-by-trial covariation requires fur-

ther showing that PAN responses are not fully explained by the

blockwise values. We tested this by asking whether the covaria-

tion illustrated in Figure 6 was explained entirely by blockwise

value. For individual neurons, we fit the partial residuals for the

value covariates with a linear model including blockwise values

and dynamic values as covariates. If the blockwise values fully

accounted for the covariation between PAN responses and
Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc. 457
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value, then only the coefficient for blockwise values would be

significant, there would be no additional explanatory power

offered by the dynamic values. On the other hand, a significant

coefficient for dynamic value would indicate that PAN responses

covaried on a trial-by-trial basis with the dynamic value esti-

mates. For the action-value and chosen-value neurons that

were significantly correlated with dynamic action-values and

chosen-values, respectively, we found that 58% (18/31) of ac-

tion-value neurons and 36% (8/22) of chosen-value neurons

were significantly correlated with dynamic value (p < 0.05, F

test). Thus, some value-sensitive PANs were correlated with the

trial-by-trial value estimates generated by our behavioral model.

Taken together, these results provide further evidence that

a significant number of PANs encode the reward values of

actions. By using a behavioral model to generate dynamic value

estimates, we also found correlations that suggest that, at the

population level, striatal PANs respond in a monotonic fashion

to trial-by-trial variations in the reward value associated with

specific actions.

Temporal Evolution of Value Representations
We also examined the response profiles of action-value and cho-

sen-value neurons to determine whether response time further

differentiated action-value and chosen-value activity in the cau-

date nucleus. The average population responses are plotted in

Figure 7A. Action-value neurons were more active than cho-

sen-value neurons prior to target acquisition, and this relation-

ship reverses during reward delivery. This is due to the greater

frequency of action-value neurons with presaccadic peak re-

sponse times (Figure 7B), and a difference between action-value

and chosen-value neurons is further supported by the fact that

the median peak response time was significantly earlier for

action-value neurons (�58 ms versus +393 ms relative to target

acquisition; p < 0.05, Mann-Whitney U test).

We further examined neural responses across the population

using smaller temporal windows. For each neuron, we fit the firing

rate in 250 ms nonoverlapping windows with the same model

used above to categorize the neurons. Activity was categorized

as action-value, chosen-value, or nonvalue, and the results were

tallied across the population (Figure 8). Action-values were repre-

sented primarily before a choice was made, peaking before sac-

cade execution. Chosen-value activity peaks following saccade

execution, with significantly more chosen-value activity than ac-

tion-value activity late in the trial (p < 0.05, z test for differences

in proportions from the same sample; Wild and Seber, 2000).

These data indicate that action-value and chosen-value repre-

sentations in the caudate nucleus have different temporal pro-

files. The predominantly presaccadic representation of action-

values is consistent with this activity biasing action selection,

whereas the predominantly postsaccadic representation of cho-

sen-values is consistent with this activity being related to evalu-

ating the outcomes of particular actions.

DISCUSSION

We found that roughly 60% of striatal PANs were modulated by

the reward values associated with two different actions in

a choice task based on Herrnstein’s matching law (Herrnstein,
458 Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc.
1961). The responses of individual PANs covaried with two dis-

tinct types of value: action-value (Samejima et al., 2005) and cho-

sen-value (Padoa-Schioppa and Assad, 2006). Action-values

represent the desirabilities of actions and can be used to make

choices (Luce, 1959; Sutton and Barto, 1998). Chosen-values

depend on the action selected and may be useful for both exe-

cuting actions and evaluating the consequences of those ac-

tions. PAN activity correlated with each of these value types

emerged at different times within a trial. Action-values were

more frequently correlated with PAN activity early in trials, before

our subjects revealed their choices. In contrast, correlations with

chosen-values tended to occur following saccade execution.

These results suggest that the striatum participates in two differ-

ent aspects of reinforcement learning: in promoting the selection

of particular actions as well as in evaluating the outcomes asso-

ciated with the chosen action.

Action-Values
Our results complement and extend existing studies of the

caudate that have used forced-choice tasks. Hikosaka and

Figure 7. The Temporal Profiles of Action-Value and Chosen-Value

Neurons Are Different

(A) The average population response for action-value and chosen-value PANs

(thick line, mean; thin lines, ±1 SEM). For each neuron, spike-density functions

were estimated from the trials in which saccades were made in the direction

that elicited the largest response (averaged over blocks). The individual

spike-density functions were peak-normalized (divided by maximum activity)

and then averaged to produce the population response.

(B) Individual spike-density functions (peak-normalized) for action-value and

chosen-value neurons, sorted by peak response time.
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colleagues manipulated which instructed saccade would be

rewarded and found that some caudate PANs signal whether

or not a reward can be expected for executing particular eye

movements (Kawagoe et al., 1998). Further, they found that

a subset of these PANs respond more when a reward is pre-

dicted for a particular saccade regardless of which movement

is instructed (Lauwereyns et al., 2002a, 2002b). Hikosaka and

colleagues propose that these PANs signal the motivational con-

text of the instructed movement and that these neurons could

bias the speed and latency of eye movements by disinhibiting

the superior colliculus via the substantia nigra pars reticulata (Hi-

kosaka et al., 2006). We found that action-value neurons encode

the value of available movements in a choice context, suggesting

that these neurons parametrically represent the value of all

potential saccades. PANs may thus play a role in action selec-

tion, with projections to the thalamus and midbrain biasing

choices in addition to modulating movement metrics.

Samejima et al. (2005) used a hand-movement choice task to

show that PANs in the putamen, as well as in a portion of the cau-

date nucleus, are correlated with action-values. Our results sug-

gest a similar representation: (1) the majority of oculomotor PANs

that were significantly modulated by action-value were corre-

lated with the action-value associated with only one of the two

available movements, (2) PANs reflecting both contralateral and

ipsilateral action-values were found in the same hemisphere,

and (3) few PANs were correlated with the difference between

the action-values associated with the two movements. One dif-

ference between these two sets of findings is that we found that

the majority of action-value neurons (86%) also exhibited some

degree of direction selectivity; neurons frequently combined

action-value information with movement selectivity. In contrast,

Samejima et al. (2005) found that only �13% of action-value

neurons exhibit movement selectivity.

There are a number of possible explanations for this difference.

First, Samejima et al. recorded in both the putamen and caudate

nucleus while monkeys indicated their choices with hand move-

ments. The caudate nucleus contains oculomotor neurons (Hiko-

saka et al., 1989a) but few neurons associated with skeletomotor

movements. Perhaps they did not observe movement selectivity

in the caudate because their monkeys did not indicate choice us-

ing eye movements. Second, we searched for neurons using an

Figure 8. Sliding-Window Regression Summary

The percentage of significant neurons is aligned to cue onset and reward onset

in the left and right panels, respectively. The nonoverlapping 250 ms bins

where the proportion of significant neurons differs for the two curves are indi-

cated with an asterix (*p < 0.05, **p < 0.01, z test).
instructed saccade task. It is possible that we recorded from

fewer action-value neurons without movement selectivity be-

cause those neurons may have been silent during the instructed

saccade task. Samejima et al., on the other hand, searched for

PANs that were active during their choice task and restricted their

analyses to the delay period preceding movement. Despite these

differences, however, both sets of results suggest that some

striatal PANs encode action-values.

In many choice situations, outcomes are linked to specific

stimuli rather than actions. The reward values associated with

specific stimuli have been referred to as offer-values (Padoa-

Schioppa and Assad, 2006). Offer-values differ from action-

values in that the former reflect the reward value of an alternative

independent of action. Neurons encoding offer-value have been

identified in the OFC (Padoa-Schioppa and Assad, 2006), and

our data do not exclude the possibility that striatal PANs may

encode offer-values when stimulus value and action are dissoci-

ated. Indeed, evidence suggests that some PANs are modulated

by stimulus color when color rather than movement direction

predicts reward (Lauwereyns et al., 2002a).

Chosen-Values
We also found that roughly 25% of PANs convey information

about chosen-values, a type of encoding not previously identi-

fied in the basal ganglia. This class of signal may be important

for learning from the consequences of actions; Morris et al.

(2006) showed that dopamine neurons in the primate midbrain

encode a specific prediction error, the difference between ob-

tained reward and chosen-value. Their data support reinforce-

ment learning models that use the difference between obtained

reward and chosen-value as a teaching signal (Niv et al., 2006;

see also Roesch et al., 2007). Our observation that some PANs

encode chosen-value suggests that these neurons may convey

chosen-value information to dopamine neurons via projections

to the midbrain. The striatum is chemically divided into regions

known as striosomes surrounded by a more diffuse matrix (Gray-

biel and Penney, 1999); both contain PANs, but striosomal PANs

project to the substantia nigra pars compacta (Gerfen et al.,

1987; Joel and Weiner, 2000). This pathway may be specialized

for computing prediction errors that promote learning about

rewarded actions (Doya, 2000; Houk et al., 1995). We do not

know whether our chosen-value PANs reside in the striosomes,

but these signals are necessary for computing the prediction

error that has been observed in primate dopamine neurons

(Morris et al., 2006).

The chosen-value activity we observed might be inherited

from the frontal cortex, although there are some differences

between these two areas. Neurons in the OFC, which projects

to the striatum (Selemon and Goldman-Rakic, 1985), encode

chosen-value signals when monkeys are choosing between juice

rewards (Padoa-Schioppa and Assad, 2006). The chosen-value

PANs we observed may reflect information passing from the

OFC through one of the parallel basal ganglia pathways (Alexan-

der et al., 1986). However, the OFC neurons represent chosen-

value irrespective of the saccade direction used to indicate

choice. We found that some caudate PANs reflected the cho-

sen-value for only one saccade direction. This difference may

reflect the demands of our task; the alternatives were associated
Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc. 459
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with particular saccades. However, it may also reflect a feature

of the chosen-value representation in the basal ganglia. It is pos-

sible that the basal ganglia is primarily involved in decisions be-

tween actions rather than between more abstract options, and

future work dissociating action and outcomes will help to clarify

this issue.

Finally, our findings of chosen-value signals in the caudate may

also extend our understanding of activity observed in forced-

choice tasks. Ding and Hikosaka (2006) (see also Kobayashi

et al., 2007) showed that some PANs exhibit response-depen-

dent reward activity in an instructed saccade task. They found

that some PANs respond for any movement that yielded a reward,

while other PANs respond for movements in only one of the direc-

tions that yielded reward. It is possible that our chosen-value

PANs are members of the same population and that some of

the neurons Hikosaka and colleagues recorded from may en-

code chosen-value in a continuous fashion.

Reinforcement Learning
When rewards associated with stimuli or actions change, value

estimates can be updated through experience. A number of the-

ories describe how the values of actions may be learned, and de-

cision-making models incorporating these algorithms are effi-

cient in a variety of contexts (e.g., Sugrue et al., 2004). Circuits

within the basal ganglia may instantiate components of these

learning models (Daw and Doya, 2006; Houk et al., 1995). Mid-

brain dopamine neurons, for example, appear to encode a reward

prediction error (RPE), a critical component of reinforcement

learning models (Schultz et al., 1997). Functional magnetic reso-

nance imaging (fMRI) studies show that blood-oxygenation level-

dependent (BOLD) changes in the striatum are correlated with

RPEs predicted by reinforcement learning models (McClure

et al., 2003; O’Doherty et al., 2003). Interestingly, the site of

BOLD changes depends on whether rewards are contingent on

actions; correlations are observed in the ventral striatum during

passive learning (McClure et al., 2003; O’Doherty et al., 2003),

whereas correlations are observed in the dorsal striatum when re-

wards are contingent on actions (O’Doherty et al., 2004; Haruno

and Kawato, 2006). This is consistent with the observation that

the caudate nucleus is active only when there is a perceived con-

tingency between actions and outcomes (Tricomi et al., 2004).

Correlations with RPEs are thought to reflect inputs from dopa-

mine neurons, consistent with the hypothesis that corticostriatal

plasticity promotes the selection of rewarded actions (Houk et al.,

1995; Reynolds et al., 2001). Our electrophysiological observa-

tions are consistent with this mechanism but also point to the

existence of a temporally distinct signal that reflects the value

of the chosen action.

Conclusions
Our data support the hypothesis that striatal PANs encode the

values of potential actions, reflecting what subjects learn from

the outcomes of past actions. These neurons could promote

the selection of rewarded actions through the outflow of the

basal ganglia to the thalamus and midbrain. We also observed

a novel type of striatal value representation; some PANs encode

the reward values associated with the chosen action. This cho-

sen-value activity occurred later in the trial, peaking after move-
460 Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc.
ment execution, which suggests that some striatal PANs may

play an evaluative role in learning itself.

EXPERIMENTAL PROCEDURES

Subjects and Surgery

Two rhesus monkeys (Macaca mulatta) were used as subjects (Monkey B and

Monkey H, 10.5 kg and 11.5 kg). All experimental procedures were approved

by the New York University Institutional Animal Care and Use Committee and

performed in compliance with the Public Health Service’s Guide for the Care

and Use of Animals.

Prior to training, each animal was implanted with a head-restraint prosthesis

and a scleral eye coil. A second surgical procedure was performed to implant

a recording chamber (2 cm diameter; Crist Instruments) centered over the

body of the caudate nucleus (�3 mm behind the anterior commissure),

5 mm lateral to the midline, and oriented perpendicular to the stereotaxic hor-

izontal plane. Surgical procedures were performed using aseptic techniques

under general anesthesia (Platt and Glimcher, 1997).

Experiments were conducted in a dimly lit sound-attenuated room. Eye

movements were measured using a scleral coil (Fuchs and Robinson, 1966)

and sampled at 500 Hz. Visual stimuli were generated using light-emitting

diodes (LEDs) 145 cm from the monkeys’ eyes.

Behavioral Task

The monkeys performed a choice task while we varied the rewards associated

with two alternatives (Lau and Glimcher, 2005). Each trial started with a 500 ms

500 Hz tone, after which the monkey was given 700 ms to align its gaze within

3� of a yellow LED in the center of the visual field. After maintaining fixation for

400 ms, two peripheral LEDs (one red and one green) were illuminated on ei-

ther side of the centrally located fixation point. One second later, the central

fixation point disappeared, cueing the monkey to choose one of the peripheral

LEDs by shifting gaze to within 4� of its location. If a reward had been sched-

uled for the chosen target, it was delivered 300 ms after the eye movement was

completed (defined as when the eye entered the eccentric target window). The

timing and appearance of each trial was identical to the monkey whether or not

reward was delivered, and the monkey was required to maintain fixation for the

duration of the reward epoch (an additional 100–300 ms depending on the re-

ward magnitude) in order for the trial to be considered correctly completed.

Rewards were scheduled using independent and equal arming probabilities

for each alternative (p = 0.15), meaning that an alternative that is not armed on

the current trial has a probability of 0.15 of being armed on the next trial. On any

trial, both alternatives, neither alternative, or only one alternative might be

armed to deliver a reward. Importantly, if a reward was scheduled for the alter-

native the monkey did not choose, it remained available until that alternative

was next chosen (no information regarding scheduled rewards was given to

the monkeys). This produces contingencies similar to those faced by animals

performing under concurrent variable-interval schedules (Nevin, 1969). We did

not impose a changeover delay or any other type of penalty for switching be-

tween the choice alternatives.

Water delivery was controlled by varying the amount of time a solenoid inline

with the water spout was held open. Over the range of magnitudes used, so-

lenoid time was linearly related to the volume of water dispensed and found to

be stable across sessions. In each session, the monkeys performed a series of

trials under four different conditions in which the ratio of reward magnitudes

took one of four values (3:1, 3:2, 2:3, 1:3). The reward magnitudes were con-

strained to sum to a constant that was the same (0.8 ml) for each ratio in order

to minimize fluctuations in motivation from block to block. The monkeys per-

formed blocks of trials at the different relative reward magnitudes. The number

of trials in a block was 100 trials plus a random number of trials drawn from

a geometric distribution with a mean of 30 trials. Transitions between blocks

of trials with different reward ratios were unsignaled. When blocks were

switched, the larger reward always changed spatial location, but its magnitude

was variable; the two possible ratios to switch to were chosen with equal prob-

ability.

We recorded a trial as aborted if the monkey failed to align its gaze within the

required distance of the fixation or cue LEDs, if an eye movement was made
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prematurely, or if fixation at the peripheral LED was broken prematurely. When

an abort was detected, any illuminated LEDs were extinguished immediately,

and the next trial began after a 3000–6000 ms time-out.

Electrophysiological Recording

For recording, an X-Y positioner (Crist Instruments) and a microdrive (Kopf

Instruments) were mounted to the recording chamber. A 23 gauge sharpened

guide tube housing a tungsten steel electrode (2–4 MU, FHC) was used to

pierce the dura. The guide tube was lowered until its tip was above or just

lateral to the cingulate sulcus as predetermined using MRI (3T; Siemens) in

Monkey B and B-mode ultrasound imaging (General Electronics; Glimcher

et al., 2001) in Monkey H. In the caudate, we distinguished PANs from tonically

active neurons based on differences in spontaneous activity, spike waveform,

and response to reward (Kimura et al., 1984; Hikosaka et al., 1989a; Aosaki

et al., 1994). If we judged a PAN to be responsive in a delayed saccade

task—by observing a phasic response during a trial—we collected data during

the matching task. If the neuron was tuned to the location of targets placed in

the visual field or saccadic eye movements, we placed one of the target LEDs

at the approximate location that elicited the largest response and the other in

the opposite hemifield; otherwise, the target LEDs were positioned to the left

and right of the fixation point at a eccentricity of 12�–16�. Approximately

25% of the PANs that we encountered were not responsive during the delayed

saccade task. This underestimates the number of nonresponsive neurons

because PANs have low baseline firing rates (0–3 spikes/s; e.g., Hikosaka

et al., 1989a), and we likely overlooked many nonresponsive PANs.

Recording sites were verified histologically in one monkey. Some of the neu-

rons included in this report were also recorded during an instructed saccade

task, and structural MRI and camera lucida drawings can be found in a paper

focusing on that task (Lau and Glimcher, 2007).

Data Analysis

The goal of our analysis was to determine whether the activity of individual

PANs covaried with changes in action-value or chosen-value. These value rep-

resentations are related, and we used multiple linear regression to differentiate

between them. We used the programmed reward magnitudes to estimate the

values the monkeys’ associated with each action in our blockwise analysis.

Value covariates for the regression were constructed in the following manner.

The action-values of the contralateral (AVC) and ipsilateral (AVI) alternatives

were defined as the programmed reward magnitudes associated with each

of the alternatives. The only difference between the programmed reward mag-

nitudes and these blockwise action-values was that, at block transitions, the

action-values changed only after the monkey had received the first reward

at the new programmed reward magnitudes. This is to account for the fact

that the monkey could not have known the reward magnitudes were changed

until actually receiving a reward. The chosen-values of the contralateral (CVC)

and ipsilateral (CVI ) alternatives were defined as equal to AVC and AVI when

the monkey chose the associated action, and zero otherwise (Figure 2A).

That is, CVC = AVC3 A C and CVI = AVI3 A I , where A C and A I are binary

variables indicating contralateral and ipsilateral choices, respectively. The

responses of individual neurons were fit using the following multiple linear

regression,

y = a1A c + a2A I + a3ðCVc � CVIÞ+ a4ðCVc + CVIÞ; (1)

where y is the firing rate. Bold-faced variables represent vectors where each

element is the corresponding variable on a particular trial; for example,

y = ½y1; y2.yN�, where N is the number of trials. The constant term is implicit

because the contralateral and ipsilateral choices sum to unity. Neurons were

categorized as follows: (1) nonvalue if both a3 and a4 were not significant, (2)

action-value if a3 was significant but a4 was not significant, and (3) chosen-

value if a4 was significant. Statistical significance for this categorization was

determined using incremental F statistic with an a level of 0.05. Movement se-

lectivity was assessed by testing whether a1 and a2 were equal (F test).

To see how Equation 1 distinguishes between action-value and chosen

value neurons, note that CVC and CVI do not overlap; one is positive whenever

the other is zero and vice versa (Figure 2A). By design, the magnitudes of the

rewards available from the two alternatives sum to a constant (AVC + AVI = 0:8

ml) within and across blocks, which means that AVC = CVC + 0:8 3 A I � CVI
and AVI = CVI + 0:83A C � CVC. Thus, an action-value neuron (a3s0 and

a4 = 0 in Equation 1) can be rewritten using substitution as

y = a1A c + a2A I + a3ðCVc � CVIÞ;
= a1A C + a�2A I + a3AVC;

where a�2 = ða2 � 0:83a3Þ, and a chosen-value neuron (a4s0 in Equation 1)

can be rewritten as

y = a1A c + a2A I + a3ðCVc � CVIÞ+ a4ðCVc + CVIÞ;
= a1A C + a2A I + a�3CVC + a�4CVI

where a�3 = a3 + a4 and a�4 = � a3 + a4. Note that while Equation 1 can deter-

mine whether a neuron significantly covaries with action-value, it cannot distin-

guish covariation of firing rate with AVC from covariation of firing rate with AVI.

Because AVC and AVI sum to a constant, a model with a3 for AVC is equivalent

to a model with �a3 for AVI. In order to determine which of the alternatives an

action-value neuron encodes, we used a reinforcement learning model (see

below) to generate behavioral value estimates that discriminated between

contralateral and ipsilateral action-values.

We further assessed the value representations in single neurons using a

second regression that incorporated dynamic value estimates derived from

a model of choice behavior. Our behavioral model predicted trial-by-trial

choices based on linear weightings of past rewards, currently available re-

wards, and past choices (Lau and Glimcher, 2005). We used the coefficients

of this behavioral model—fit separately to the choice data pooled across

behavioral sessions for each monkey—to estimate the expected value (to

the monkey) of each alternative on trial-by-trial basis. From these trial-by-trial

value estimates, we constructed another set of regression covariates. Just as

for the regressions above, we have action-values (AVC and AVI ) and chosen-

values (CVC and CVI) for each alternative, although in this case, these values

represent dynamic estimates of these properties. For chosen-value neurons,

we fit the following model:

y = a1A C + a2A I + a3CVC + a4CVI: (2)

For action-value neurons, we fit the data using trial-by-trial estimates of

action-value as covariates:

y = a1A C + a2A I + a3AVC + a4AVI: (3)

Because the trial-by-trial action-value estimates vary according to the

stochastic delivery of rewards to each alternative, AVC and AVI are linearly

independent and do not sum to a constant, which allows us to determine

whether individual neurons encode the action-value of the contralateral or

ipsilateral alternative or some mixture of both.

We included additional covariates to Equations 1–3 to protect against

potential confounds due to variables correlated with value. To control for cor-

relations with movement metrics, we included the reaction time (RT) and peak

velocity (VEL) of the eye movement measured on each trial. We also included

a covariate for the magnitude of the reward obtained (R) on each trial. This en-

sured that neurons that simply responded to obtained reward were not errone-

ously deemed value neurons. For the regression analyses using a tailored tem-

poral window for each neuron, we included R if the peak response of a neuron

followed saccade completion. For the regression analyses using smaller fixed

windows throughout the trial, we included R in all windows following the target

acquisition. Coefficients for these additional variables were fit simultaneously

with the other covariates to ensure that the occasional correlations between

covariates were accounted for.

In order to examine in detail the effect of specific variables on firing rate, we

used partial residuals, which are model residuals that are not adjusted for the

effect of the particular covariate of interest (Larsen and McCleary, 1972). For

example, partial residuals for contralateral action-value (AVC) were computed

as follows

33 = y� ðba1A C + ba2A I + ba4AVI + ba5RT + ba6VEL + ba7RÞ; (4)

where ba1�7 are the coefficients estimated from fitting Equation 3 with the

movement metrics and obtained reward. Plotting 33 against AVC is known

as a partial residual plot, and the coefficient for action value (ba3), is equal to

the slope of the best-fit line through the residuals in this plot. Partial residual
Neuron 58, 451–463, May 8, 2008 ª2008 Elsevier Inc. 461



Neuron

Striatal Encoding of Reward Value during Choice
plots directly reveal the relationship between the variable of interest and firing

rate, after controlling for the influence of all other variables in the regression.

We term these partial residuals the effect of a particular variable on firing

rate, because they indicate the change in firing rate (in the same units of

spikes/s as the original response) due to that variable.

In the first portion of this report, we analyzed the value representations of in-

dividual neurons. To do this, we estimated statistics using a single temporal

window tailored for each neuron (Lau and Glimcher, 2007). First, we estimated

spike-density functions for each movement direction using a Gaussian

smoothing window. The degree of smoothing was chosen to maximize the in-

formation gain per spike (Paulin and Hoffman, 2001; see Supplemental Data

available online) for each neuron. Next, the peak response for each neuron

was estimated as the maximum of whichever spike-density function (corre-

sponding to contralateral or ipsilateral choices) had the largest response. Fi-

nally, we defined an analysis window using the first times to half-maximum

preceding and following the peak response.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/3/451/DC1/.
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