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SUMMARY

Decision making with several choice options is central
to cognition. To elucidate the neural mechanisms of
such decisions, we investigated a recurrent cortical
circuit model in which fluctuating spiking neural
dynamics underlie trial-by-trial stochastic decisions.
The model encodes a continuous analog stimulus
feature and is thus applicable to multiple-choice deci-
sions. Importantly, the continuous network captures
similarity between alternatives and possible overlaps
in their neural representation. Model simulations ac-
counted for behavioral as well as single-unit neuro-
physiological data from a recent monkey experiment
and revealed testable predictions about the patterns
of error rate as a function of the similarity between
the correct and actual choices. We also found that
the similarity and number of options affect speed
andaccuracyof responses. A mechanism is proposed
for flexible control of speed-accuracy tradeoff, based
ona simple top-downsignal to the decisioncircuit that
may vary nonmonotonically with the number of choice
alternatives.

INTRODUCTION

The ability to make a choice among multiple alternatives is a hall-

mark of goal-directed adaptive behavior and has been the

subject of a large body of work in cognitive psychology. Human

studies showed that, typically, increasing the number of alterna-

tives results in longer response times and lower accuracy (the

probability of correct choices) (Hick, 1952; Luce, 1986). Speed

and accuracy, however, are not set in stone and are affected

by practice, attention, motivation, and more. Furthermore,

subjects can flexibly adapt their responses according to

changing task demands, often via a speed-accuracy tradeoff:

improving performance on the cost of slower response times

(Hale, 1969; Palmer et al., 2005; Reddi and Carpenter, 2000;

Wickelgren, 1977).

In recent years, significant progress has been made in

revealing the neural basis of perceptual decision making (re-

viewed by Glimcher, 2003; Gold and Shadlen, 2007; Heekeren

et al., 2008; Wang, 2008). Theoretical studies provided additional

insights into the underlying mechanisms and helped to bridge
N

between the single-neuron level and behavior (Bogacz et al.,

2006; Cisek, 2006; Deco and Rolls, 2006; Frank and Claus,

2006; Ganguli et al., 2008; Grossberg and Pilly, 2008; Machens

et al., 2005; Wang, 2002). Recently, building on previous work

about two-choice decision making (Huk and Shadlen, 2005;

Kiani et al., 2008; Roitman and Shadlen, 2002), Churchland

et al. (2008) recorded neural activity in the lateral-intraparietal

area (LIP) and collected behavioral data while monkeys per-

formed two- and four-alternative forced-choice random-dot

motion (RDM) discrimination tasks. In this task, the subject is

required to report the perceived direction of motion in a dynamic

random dot array (Figure 1A). At the behavioral level, increasing

the number of choices from two to four resulted in longer

response times and lower accuracy. At the neural level, the

activity of single neurons in LIP was correlated with the animal’s

decisions, showing a ramping-up of activity when the selected

target was in the neuron’s response field. Decisions were

made when the activity crossed a threshold activity level.

Multiple-choice decisions have been commonly modeled as

a race between discrete integrators (Churchland et al., 2008;

McMillen and Holmes, 2006; Niwa and Ditterich, 2008) or by

a competition between a number of discrete neural pools (Bo-

gacz et al., 2007; Usher and McClelland, 2001). While successful

in accounting for a range of behavioral data, this approach is

likely to be inadequate for understanding the physiological basis

of multi-choice decisions, because the tuning of neurons is typi-

cally broad and consequently the neural representations of the

choice alternatives may overlap to a varying extent that depends

on the number of choice options and the similarity between

them. Similarity between stimulus/choice items, widely studied

in psychology, plays a fundamental role in classification, recog-

nition, and other decision processes (Ashby and Perrin, 1988;

Kahana and Bennett, 1994; Nosofsky, 1986, 1997; Tversky,

1977). In physiological studies, the issue of similarity has so far

been largely avoided using two diametrically opposing alterna-

tives (e.g., left versus right motion direction). However, similarity

becomes important when the number of choice options is

increased in a limited feature space (e.g., directional angles

between 0� and 360�). The RDM direction discrimination task

represents a suitable experimental paradigm for studying simi-

larity effects on the choice behavior and the underlying neural

circuit dynamics.

In this work, we considered a continuous network approach to

multiple-choice decisions, using a network capable of repre-

senting an analog sensory input (Ben-Yishai et al., 1995; Camp-

eri and Wang, 1998; Erlhagen and Schöner, 2002; Jazayeri and
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Movshon, 2006; Ma et al., 2006). Specifically, we investigated

a biophysically based, ‘‘line-attractor’’ network of spiking

neurons that can encode directional inputs (Carter and Wang,

2007; Compte et al., 2000; Renart et al., 2003) and tested the

hypothesis that it can serve as a framework for modeling

multiple-choice decision making. This model is the continuous

analog of a model with discrete neural pools, which is endowed

with slow synaptic reverberation mediated by NMDA receptors

(for time integration of information) and winner-take-all competi-

tion mediated by feedback inhibition (Wang, 2002; Wong and

Wang, 2006; Wong et al., 2007). The discrete model accounted

successfully for behavioral and physiological data from the

RDM experiment with two-alternative forced-choice task (Shad-

len and Newsome, 2001; Roitman and Shadlen, 2002; Huk and

Shadlen, 2005).

The continuous network model offers a biophysically based

circuit mechanism for multiple-choice decision making, which

operates independently of the number of choices and takes

into account the similarity among them. We used the model to

address the following important questions. (1) Can a line-attrac-

tor network account for behavioral and physiological data from

the multiple-choice RDM direction discrimination task? (2)

What are the effects of similarity among choice alternatives on

the neural population firing pattern that ultimately determines

performance and response time? (3) Can such a model shed light

on the neural mechanisms that control subjects’ response times

and performance in multiple-choice tasks?

Computer simulations show that the model accounts for

a range of behavioral and physiological data from the recent

monkey experiment (Churchland et al., 2008). Interestingly, the

recurrent (attractor) network dynamics depend on the number

(two, four, and eight) of choice options in a nonmonotonic

fashion, which we explain in terms of similarity and its neuronal

underpinning. Furthermore, we show that in the presence of

similarity effects, optimal behavior (defined by maximal rewards)

requires a flexible mechanism for controlling the speed-accu-

racy tradeoff, which, we propose, can be achieved by a simple

top-down signal to the decision circuit. Taken together, our find-

ings suggest a general computational framework for multiple-

choice decision making.

RESULTS

We used a recurrent circuit model of spiking neurons to simulate

network dynamics underlying decision making in a multiple-

choice motion discrimination task (Figure 1). For the sake of

comparing with data from Churchland et al. (2008), the model

network can be viewed as representing a local microcircuit in

area LIP. The pyramidal neurons in the model are directionally

tuned, and their preferred directions cover uniformly all direc-

tions along a circle. The network is endowed with recurrent

connections, in accordance with the physiology of cortical

circuits (Douglas and Martin, 2007; Goldman-Rakic, 1995). Due

to sufficiently strong recurrent excitation, a transient directional

cue can trigger a bell-shaped persistent activity pattern

(‘‘bump attractor’’) (Compte et al., 2000; Wang et al., 2004),

consistent with the fact that LIP neurons show direction-selec-

tive sustained activity during a delay period in working memory

tasks (e.g., Gnadt and Andersen, 1988; Chafee and Goldman-

Rakic, 1998; Shadlen and Newsome, 2001). The transition from

spontaneous activity to persistent firing in the model, however,

is not necessarily fast or irreversible. Slow NMDA-mediated

reverberation enables the network to integrate inputs over

extended time periods (Wang, 2002; Wong and Wang, 2006).

Therefore, this attractor network does not simply operate in the

steady states, but also performs computations by virtue of tran-

sient dynamics. In addition, feedback inhibition mediates

winner-take-all competition and categorical decision formation.

A

B

Figure 1. The Multiple-Choice Motion Discrimination Task and

Network Architecture

(A) In the task, the subject fixates and is then presented with a number of

peripheral targets indicating the choice alternatives. After a delay, a dynamic

random-dots array appears. A fraction of the dots move coherently in the

direction toward one of the targets, while the remaining dots move at random

directions. When ready to respond, the subject reports the perceived net

direction of motion by making a saccadic eye movement to the corresponding

target.

(B) Schematic description of the spiking neuron network model. The network is

composed of spiking pyramidal cells and inhibitory interneurons. Pyramidal

cells are directionally selective and are spatially arranged according to their

preferred directions. The connectivity strength between pyramidal cells is

a Gaussian function of the difference between their preferred directions. For

the sake of simplicity, connections to and from the interneurons are nonselec-

tive. Recurrent excitation in the model underlies accumulation of sensory infor-

mation over time, while feedback inhibition mediates competition between the

choice alternatives and categorical decision formation.
1154 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc.
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Figure 2. Simulation Protocol

(A) Schematic time course of the input signals.

The input signals represent sensory information

acquired during the task and are implemented

by rate-modulated Poisson spike trains projecting

to the neurons in the network. The targets are

presented at 300 ms, and the corresponding

signal to the network is activated after a latency

of 200 ms. The target input has a transient phase,

to model spike-rate adaptation of the input

neurons, followed by tonic activity. The motion

stimulus is presented at 1300 ms, resulting first

in a reduction of the target input (after a latency

of 80 ms) and then in activation of the motion

stimulus input to the decision circuit after a latency

of 200 ms.

(B) Normalized spatial profile of the target input

with four choice options.

(C) Spatial profile of the motion stimulus input for

different coherence levels, as a function of direc-

tion relative to the coherent motion.
All the neurons in the network receive a large amount of back-

ground Poisson inputs that enable the neurons to fire irregularly

and approximately asynchronously at a few hertz in the absence

of additional external inputs. Furthermore, as shown below, the

stochastic neuronal spike discharges play an important role in

producing trial-to-trial variability of both the network activity

pattern and the resulting decision outcome.

Network Dynamics of Multiple-Choice Decisions
We assume that the RDM stimulus is encoded in the middle-

temporal area (MT), while the visual input about choice alterna-

tives (the targets) is encoded in a separate sensory area, and

the two signals converge in a putative decision circuit like LIP.

In addition, to study how subjects can internally modulate their

response in the task, we assume that the decision circuit

receives a simple ‘‘top-down’’ control signal from higher brain

areas such as the prefrontal cortex. In summary, the pyramidal

neurons in the model receive three external inputs, representing

the visual targets, the motion stimulus, and the control signal,

respectively. Figure 2 shows the temporal and spatial structure

of the target-input and the motion stimulus input. The control

signal input is uniform in space and time independent.

Figures 3A and 3B show a sample simulation trial with four

choices. The motion coherence is 0% in this trial, and therefore

the motion stimulus input is the same for all neurons. However,

as the activity develops in response to the motion stimulus, the

four neural pools close to the targets compete against each other

through shared inhibition, and stochastic recurrent network

dynamics eventually break the symmetry. Namely, the activity

of one of the neural pools (the top one in this simulation) ramps

up and wins the competition, yielding a categorical choice. Inter-

estingly, the model network does not exhibit winner-take-all

competition prior to the motion stimulus onset, as long as the

target inputs are sufficiently strong. This feature was also
N

observed in a discrete model for two-choice decision making;

an explanation can be found in earlier papers from our lab

(Wong and Wang, 2006; Wong et al., 2007). The decision

process terminates when the activity of a neural group in the

network crosses a predetermined threshold level. Based on

experimental findings (Churchland et al., 2008; Roitman and

Shadlen, 2002), we assume that the threshold depends neither

on coherence level nor on the number of choices. As shown by

the four sample trials in Figures 3C–3F, both the winner (hence

the choice) and the response time fluctuate from trial to trial,

due to stochastic network dynamics.

The simulated neural dynamics shown in Figure 3 compare

directly with decision-correlated neurophysiological data from

area LIP. In the four-choice experiments, for example (Figure 4

in Churchland et al., 2008), the activity of neurons located close

to the selected target in each trial ramped up, while the activity of

neurons at orthogonal and opposite directions either decreased

or ramped up at a much more moderate rate. In comparing the

model and the neurophysiology, it is worth noting that in the

monkey experiment typically a single-unit is recorded at a time

and its selectivity and dynamics are assessed across trials. By

contrast, in our model all neurons can be monitored and shown

in a spatiotemporal pattern for a single trial (Figures 3A and 3B).

At the neural population level, the experimentally observed

ramping activity of single units is interpreted in our model in

terms of a gradual development of ‘‘bump’’ or ‘‘hill’’ of network

activity around the direction of the selected target (Figures 3A

and 3B). Our model proposes a circuit mechanism for the forma-

tion of such activity patterns and therefore captures a key stage

in the decision making process. When a ‘‘bump’’ activity profile is

developed near one of the choice targets, it determines a well

defined choice response, which can be readout by a downstream

system (e.g., the superior colliculus, a command center for

saccadic eye movements; cf. Lo and Wang, 2006).
euron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1155
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For the sake of simplicity, in this work we did not explicitly

include a downstream motor command circuit, but used a popu-

lation vector measure to readout the choice of response. Specif-

ically, in our simulations, we calculated the activity population

vector at the time a neural pool crosses a firing threshold level

(which presumably triggers a motor response downstream)

and selected the nearest target as the behavioral choice (see

Supplemental Experimental Procedures). We also examined an

alternative readout algorithm, in which a target is selected only

if its angular distance from the population vector is smaller

A

B

C D

E F

Figure 3. Simulated Neural Activity during Sample Trials with Four Choices and 0% Coherence Level

(A) Spiking activity of the pyramidal (black) and inhibitory (red) neurons in the model. Pyramidal neurons are arranged along the ordinate according to their

preferred direction. The directions of the targets are 45�, 135�, 225�, and 315�.

(B) Color-coded activity of the pyramidal neurons in (A) after smoothing (see Supplemental Experimental Procedures).

(C–F) Activity time course of neurons located around the targets in four sample trials. The colors of the traces correspond to the targets in the schematic illustration

of target locations (left). Similar to neural data from LIP, neurons located around the targets respond vigorously to the presence of the targets even before the

onset of the motion stimulus. When the motion stimulus is presented, firing activity shows an initial dip, which in the model is assumed to arise from divided atten-

tion between the target and the motion stimuli. During the decision process, the network displays competitive dynamics, and eventually, the activity of a group of

neurons ramps up and reaches the preset decision threshold (solid vertical line). Due to stochastic firing within the network, both the winning neural pool (hence

the choice) and the response time vary from trial to trial even when the stimulus condition remains unchanged.
1156 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc.
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Figure 4. Model Network Activity Dynamics with Two, Four, and Eight Choices

Spatiotemporal network activity in trials with 0% coherence (A–C) and 6.4% coherence (D–F).When the number of choices is increased, the input signal repre-

senting the targets is modified accordingly, but the motion stimulus input and all the network parameters remain unchanged. Thus, the same circuit underlies

decision making in the motion discrimination task independently of the number of choices.
than a certain tolerance window (Figure S1). With the latter algo-

rithm, performance is slightly lower, because in a fraction of trials

the population vector falls outside the tolerance window.

However, the results are basically similar using these two

different methods. In this way, a single response (among two,

four, or eight options) is selected by the model, enabling us to

directly compare our model with the monkey experiment in terms

of both behavioral performance and single-unit neurophysi-

ology.

The model (Figures 3C–3F) captures several physiological

observations from the LIP neurons in the monkey experiment.

At the onset of the visual target input, pyramidal neurons located

close to one of the targets respond by an initial transient followed

by a tonic response (Churchland et al., 2008; Huk and Shadlen,

2005; Roitman and Shadlen, 2002). Shortly after the onset of the

motion stimulus, the model neurons show a dip in the neural

response. To model the dip in response, we assume that 80 ms

after the motion stimulus onset, there is a drop in the efficacy of

the target-input due to either a shift in covert attention from the

targets to the random dots motion stimulus, or cross inhibition
N

between upstream neurons signaling the targets and the motion

stimulus (cf. Wong et al., 2007). The exact neural mechanism that

causes the dip is not critical for our purpose. The important point

is that it serves as a starting point for activity buildup during the

decision process. The input signal representing the motion stim-

ulus is assumed to reach the circuit after a 200 ms latency

following the motion stimulus onset. The decision process

proceeds then in two steps: gradual ramping activity that inte-

grates sensory input over time, followed by a categorical choice

through competition between neural pools selective for the

choice alternatives. Importantly, as in the monkey experiment

(Churchland et al., 2008), the input signal representing the visual

targets is constantly present during the decision process, to

guide the network on the categorical choice options.

Note that, during presentation of the targets, activity of the

inhibitory neurons is elevated relative to the spontaneous firing

(Figure 3A), partly because the activity of pyramidal neurons

located around the targets causes an increase in the recurrent

excitatory input to the inhibitory neurons. Moreover, as part of

the simulation protocol, the inhibitory neurons receive an
euron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1157
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Figure 5. Time Course of Neural Firing and Activity Buildup during the Decision Process
(A–C) Activity of neurons located around the selected target (solid lines) and in the opposite direction (dashed lines) during simulations with two, four, and eight

choices, respectively. Different colors denote different coherence levels. Each trace was obtained by averaging neural activity over 200 correct trials.

(D) Activity buildup rates with two and four choices, calculated over the epoch indicated by a shaded rectangle in (A) and (B). Error bars indicate SEM. The buildup

rate for neurons located around the selected target increased quasilinearly as a function of the coherence level. Increasing the number of choices from two to four

resulted in lower buildup rates, but the slope of the buildup versus coherence remains approximately unchanged, as observed in LIP neurons in the monkey

experiment (Churchland et al., 2008).

(E) Activity of neurons around the selected target during simulations with 6.4% coherence and different number of targets. Similar to findings from LIP neurons,

the spiking response to the targets was reduced when the number of targets was increased, resulting in a lower dip of activity and larger excursion from baseline

to threshold during motion stimulus presentation.
external excitatory input signal (feed-forward inhibition). We

found that such a signal contributes to stabilizing the response

of the network to the targets over time (data not shown).

Figure 4 shows sample simulations with two, four, and eight

choices. When the number of choices was changed, the motion

stimulus input, the decision threshold and all the network param-

eters remained the same. The target-input, on the other hand,

depends on the number of targets and their location. In addition,

we assumed that the magnitude of the control signal can vary as

function of the number of choices or their angular separation, to

model a flexible top-down modulation of the decision process in

response to variations in task difficulty (see below). In sum, since

the network represents all the directions along a circle, the same

circuit can operate as a substrate for decision making in the task,

independently of the number of targets or their angular direc-

tions.

Time Course of Ramping Activity and Its Dependence
on Motion Coherence
How does the strength of the sensory evidence, i.e., the coher-

ence level, affect the decision dynamics in the network? Figures

5A–5C show activity of neurons around the selected target (solid

lines) and the opposite target (dashed lines) during correct trials
1158 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc
with two, four, and eight choices. During the decision process,

the activity of neurons located around the selected target

ramped up, and the buildup rate increased with the coherence

level. Figure 5D shows the buildup rate of ramping activity (see

Supplemental Experimental Procedures) as a function of coher-

ence for simulations with two and four choices. Buildup rates

increase as a function of coherence for neurons around the

selected target (Tin), and decrease for neurons at the opposite

direction (Tout). Notably, in agreement with experimental findings

of Churchland et al. (2008), for neurons at Tin, the dependence of

the buildup rate on the motion coherence has a similar slope for

two and four choices, but is shifted downward for the four-

choice task. Unlike the experimental findings, however, the

model does not exhibit a significant difference between neurons

located at 90� to the selected target (T90) and neurons in the

opposite direction (Tout) in the four-choice task (see Discussion).

We tested next how changing the number of targets affects the

activity patterns in the network. Figure 5E compares the

responses of neurons located around the selected target during

simulations with two, four, and eight choices (6.4% coherence).

Increasing the number of targets reduced both the neural

response to the targets and the activity level at the dip, in accor-

dance with experimental findings (Churchland et al., 2008). Two
.
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factors contribute in our model to the reduction of response

when the number of choices is increased. First, in our simulation

protocol we assume that the magnitude of the target input is

monotonically decreasing as function of the number of targets,

presumably as a result of a normalization of neural activity in

the upstream system where the target input is encoded. Second,

A

B

C

Figure 6. Simulated Behavioral Data

(A) Performance asa function ofmotion coherence. Except for the highestcoher-

ence levels, performance decreases with increasing number of choice options.

(B) Mean response times as a function of coherence on correct (circles) and

error (squares) trials. Decisions take longer times to achieve with a larger

number of choice options.

For (A) and (B), the control signal in these simulations was 6 Hz, 20 Hz, and

16 Hz for two, four, and eight choices, respectively.

(C) Spatial distribution of errors in simulations with eight choices. The histo-

grams show the probability of choosing a target at different angular distances

Dq from the correct target, at coherence levels 3.2%, 6.4%, and 12.8% (the

probability refers to selecting one of the two possible targets for Dq = 45�,

90�, and 135�). Due to lateral interactions in the network, the probability of

making an erroneous choice to a target adjacent to the correct one was higher

than for the other targets.
N

feedback inhibition within the circuit contributes further to the

modulation of response as a function of the number of targets

(see Supplemental Results and Discussion).

Performance and Response Times
At the system level, the decision process is manifested in behav-

ioral measures such as performance and response times.

Figure 6A shows the model’s performance, i.e., percentage of

correct choices as a function of coherence level, for simulations

of the two-, four-, and eight-choice motion discrimination tasks.

Each data point is based on 2500 simulation trials. At low coher-

ence levels, performance was close to chance, and as the motion

coherence increases, performance increased monotonically and

approached 100% for high coherence levels. The data were

fitted by a Weibull function (see Supplemental Experimental

Procedures). Figure 6B shows the simulated mean response

times as a function of coherence level. For a given coherence

level, performance was lower and response times were longer

for a larger number of choice alternatives. Notably, the mean

response time for error choices (Figure 6B, boxes) in a given

condition was longer than that of correct choices. Overall, the

model reproduces all the salient characteristics of the psycho-

metric functions observed in the monkey behavioral experiment

with two and four equally distanced targets (Churchland et al.,

2008) and predicts the behavioral trend for eight choices.

For further comparison with experimental data, we simulated

also a two-choice task with targets separated by 90�. Church-

land et al. (2008) found that with 90� separation, performance

was similar in comparison to 180� separation, but response

times were somewhat longer at low motion coherence levels.

Our model also performed with the same accuracy when the

separation of the two choice options is either 90� or 180�, but

did not show significant differences in the reaction times under

these two conditions (Figure S2). A possible explanation for

this discrepancy will be offered in the Discussion.

Error Rate as a Function of the Similarity between
the Correct and Actual Choice
In our model, the choice alternatives signaled by the visual

targets are directional angles. If the targets are positioned at

equal distances, the angular difference DQ between adjacent

targets decreases with a larger number of choice options

(180�, 90�, 45� for two, four, and eight, respectively). Corre-

spondingly, the similarity between alternatives, defined by an

appropriate decreasing function of DQ [e.g., exp(�DQ)],

increases with the number of choice options. When the neural

pools selective for choice targets are close to each other, inter-

actions between them through lateral excitatory connections

become important in determining the network dynamics. We

wondered whether this similarity effect had observable conse-

quences at the behavioral level. Indeed, we found that for inter-

mediate coherence levels (between 3.2% and 12.8%), the prob-

ability of an erroneous choice in the eight choice task depended

on the location of the selected target (Figure 6C). Specifically, the

probability of making an erroneous choice to a target adjacent to

the correct one was higher than for the other targets. This spatial

pattern of errors provides a testable prediction that is specific to

the continuous model in relation to a discrete model.
euron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1159
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Figure 7. Similarity Effect and Overlaps in the Neural Representation of Targets

(A–C) Responses during sample simulation with eight targets separated by 45� (A), four targets separated by 90� (B), and four targets separated by 45� (C). (Left)

Schematic illustration of target locations. (Middle) Activity dynamics of neural pools located around the targets (color coding as in Figure 3). (Right) Activity profile

at the decision time (colored lines indicate target locations). In many of the simulations with 45� separation (panels [A] and [C], see text), activity buildup occurred

around more than one target, resulting in merging of activity bumps around adjacent targets.

(D and E) Response times (D) and performance (E) as a function of motion coherence for four targets separated by either 90� (dots) or 45� (triangles). In the 45�

targets separation case, recurrent excitation between neural pools that were involved in the merging of activity buildup resulted in acceleration of the network

dynamics. Different colors denote three magnitudes of the control signal, which can be used to adjust response times and performance.
Similarity Effect and Overlaps in the Neural
Representation of Targets
We analyzed the effect of similarity on network dynamics when

the separation between two adjacent targets is relatively small,

resulting in overlap in their neural representation. In eight-choice

simulations, we observed that, during the motion stimulus

presentation, as the activity of neural pools located around the

targets built up over time, the ‘‘growing’’ bumps in the network

activity profile often merged with each other (49% of the trials;

see Supplemental Experimental Procedures), instead of display-

ing winner-take-all competition (Figure 7A, right). In other words,

activity buildup is observed not only around the selected target

but also at one or two of the adjacent targets (Figure 7A, middle).

To further test the hypothesis that this phenomenon stems

from overlaps in the neural representation of adjacent targets,

we performed a set of simulations with four choice options but

with targets separated by DQ = 45�, and compared them with

the standard four-choice simulations (DQ = 90�) (Figures 7B

and 7C). Indeed, in a large fraction of the trials activity buildup

occurred around more than one target (93% of the trials with

DQ = 45�, compared to 5% with DQ = 90�). Interestingly, for

a given value of the control signal, response times were about

twice faster in simulations with DQ = 45�compared to DQ =

90� (Figure 7D). This can be explained by mutually excitatory

interactions between adjacent neural pools that, with DQ =
1160 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc
45�, display overlapping buildup activity, leading to an accelera-

tion of the network dynamics. However, response accuracy is

lower with DQ = 45� (Figure 7E), demonstrating that in the model,

insufficient time integration of sensory evidence is detrimental to

the decision performance. This result suggests that in order to

achieve optimal behavior, a mechanism is needed to flexibly

control the tradeoff between speed and accuracy, as the number

and similarity of choice alternatives are varied.

Control of Speed-Accuracy Tradeoff
by a Simple Top-Down Signal
At the behavioral level, response times and performance vary in

response to cognitive, top-down ‘‘instructions’’ (e.g., Palmer

et al., 2005) or changes in the difficulty of the task (e.g., when

the choices become more similar). We explored the possibility

that during decision making a top-down signal projects to the

decision circuit and modulates the decision process according

to changing task demands. A simple and conceivable form of

a top-down signal is a nonselective and time-independent input

to the pyramidal neurons. We included such a control signal in

our simulations and tested how it affects the decision process.

Figures 8A and 8B show the performance and response times

as a function of coherence in simulations with eight choice alter-

natives and a control signal of 13 Hz, 16 Hz, and 20 Hz.

Increasing the magnitude of the control signal reduced response
.
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Figure 8. Speed-Accuracy Tradeoff and Optimization of the Decision-Making Process
(A) (Top) Performance as a function of the motion coherence in simulations with eight choices, for three values of the control signal. (Bottom) Relative change in

performance for control signals of 13 Hz and 20 Hz relative to 16 Hz.

(B) Response times as a function of the motion coherence, same conventions as in (A).

(C–E) Dependence of the mean reward rate on the control signal level in simulations with two, four, and eight choices, respectively. The optimal control level

(corresponding to maximum reward rate) has a nonmonotonic dependence on the number of choice options, due to similarity effects (see text). Each point is

calculated from a block of trials with a uniform distribution of coherence levels. The reward rate R is defined as R = P/T, where P is the average performance

and T is the average trial time duration (see Supplemental Experimental Procedures). Error bars indicate SEM.
times, with an especially pronounced effect at low coherence

levels. Intuitively, the elevated external drive to the pyramidal

population accelerates the dynamics of the network. Surpris-

ingly, however, increasing the control signal also resulted in

lower performance at the medium range of coherence levels

(3.2%–12.8%). The reduced performance could partly result

from less time integration due to the shorter response times.

Moreover, while the motion stimulus provides a selective input

to neurons located around the correct target, adding a nonselec-

tive input signal reduces, in a way, the signal-to-noise ratio of the

total input to neurons selective to the correct direction relative to

neurons selective to other directions.

The fact that a stronger control signal results in faster

responses but lower performance indicates that the control

signal mediates, according to the model, a speed-accuracy

tradeoff in the task. We tested therefore how changes in the

strength of the control signal affect the overall reward rate R =

P/T, where P is the average percentage of correct (and re-

warded) trials and T is the average trial duration (see Supplemen-

tary Experimental Procedures). We found that for a given number
N

of choices, the reward rate R had an inverted U shape as function

of the control signal, suggesting that reward optimization can be

achieved by tuning of the control signal.

Maximal reward rates were obtained with control signals of

24 Hz, 31 Hz, and 14 Hz for two, four, and eight choices, respec-

tively. Somewhat surprisingly, the optimal control signal is not

a monotonic function of the number of choices. This nonmono-

tonic dependence, however, can be explained by the significant

similarity effect with eight choices but not two or four choices

discussed previously: the targets in the eight-choice task are

separated from each other by DQ = 45�, and as a result adjacent

‘‘bumps’’ of activity merge and lead to acceleration of the deci-

sion process. If the control signal is relatively high, the activity

ramp-up is fast and performance is poor. To compensate for

the accelerated dynamics, the magnitude of the control signal

has to be reduced accordingly. Therefore, to ensure optimality,

the level of control signal should vary nonmonotonically as the

number of (equally distanced) choice alternatives is increased.

More generally, these results show that overlaps in the neural

representations of the choice alternatives could have important
euron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1161
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effects on the decision circuit dynamics, with significant implica-

tions for reward outcomes.

DISCUSSION

A Neural Circuit Model for Multiple-Choice Decisions
We present here a continuous network model of spiking neurons

for multiple-choice decision making. The model combines a rela-

tively detailed level of biological realism and the ability to repre-

sent decision making independently of the number of choice

alternatives or their angular locations (Figure 4). Thus, the model

provides a useful platform to study, within one unifying frame-

work, how changing the number of choices affects subjects’

response times and performance, and to inquire about the

underlying synaptic mechanisms.

We found that this model accounts successfully for a wide-

range of behavioral and physiologically data from the motion

discrimination task (Figures 5 and 6) and provides specific test-

able experimental predictions, in particular about the pattern of

error rates as a function of the similarity between the selected

and correct target. Interestingly, this model reveals similarity

effects at both the neuronal and behavioral levels. Namely, over-

laps in the neural representation of similar choice alternatives

greatly affect the network activity patterns, speeding up ramping

activity and hence response times, but leading to poorer perfor-

mance with higher error rates for those choices closest to the

correct option. To effectively handle such similarity effects and

optimize their overall performance, subjects have to adapt their

responses in the task. We propose a simple mechanism for

such flexible control of performance, based on a top-down

projection to the decision circuit that can mediate a speed-accu-

racy tradeoff (Figure 8).

From a Discrete to a Continuous Recurrent
Attractor Network
In recent years, neurophysiological studies have revealed deci-

sion-correlated neural activity in various brain areas, including

LIP (Shadlen and Newsome, 2001), the frontal eye fields (Schall

and Hanes, 1993), dorsolateral prefrontal cortex (Kim and Shad-

len, 1999), and premotor cortex (Cisek and Kalaska, 2005; Romo

et al., 1997). Notably, in the same brain areas, persistent activity

is commonly observed during delay periods of working memory

tasks (Funahashi et al., 1989; Gnadt and Andersen, 1988), sug-

gesting a role for attractor network dynamics as the neural

substrate for both processes.

Previous work from our lab (Wang, 2002; Wong and Wang,

2006; Wong et al., 2007; Wang, 2008) has shown that attractor

dynamics in a biophysically based model is not only suitable

for winner-take-all competition underlying categorical choice,

but is also compatible with slow transients required for graded

temporal integration of sensory inputs. In fact, strong recurrent

synaptic circuitry represents a leading candidate mechanism

for realizing a long integration time constant (up to about 1 s)

beyond typical neuronal and synaptic time constants.

To model two-choice decision-making tasks, previous attrac-

tor models represented the choice alternatives by two separate

and homogeneous neural populations (a discrete model) (Wang,

2002; Wong and Wang, 2006; Wong et al., 2007). In the present
1162 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc
study we generalize the attractor network framework to multiple-

choice decisions by using a line-attractor network, capable of

representing a continuum of directions of motion. Our circuit is

based on a model originally developed for mnemonic delay-

period activity in spatial working memory (Compte et al., 2000)

and later elaborated in several ways (Carter and Wang, 2007; Re-

nart et al., 2003; Tegner et al., 2002; Wang et al., 2004). Thus, the

model not only represents decision-related dynamics but can

also support, in a natural way, storage of the decision result in

the form of persistent activity. Whether LIP indeed behaves as

an attractor network remains an open question (Ganguli et al.,

2008; Wang, 2008). The mechanism proposed here is concerned

with a local circuit and may well be realized in other cortical areas

such as the prefrontal cortex.

Fluctuating Neural Activity Patterns Underlying
Trial-by-Trial Stochastic Decisions
At a conceptual level, our work contrasts with some other studies

regarding the computational interpretation of the activity pattern

that develops on each trial and the stochastic variation of this

pattern from trial to trial. In our model, a decision is made in

the form of a bell-shaped ‘‘bump’’ activity pattern. With two or

more choice targets, such a bump develops stochastically and

its peak location varies among possible choice targets in

different trials, with probabilities that depend on the motion

coherence level. This contrasts with an alternative view in which,

on a single trial, a bump activity profile explicitly represents

a probability density function about a continuous range of

possible choices, from which a categorical decision is readout

by a Bayesian decoder (Ma et al., 2006; Beck et al., 2008). Our

work suggests that explicit representation of probability densi-

ties by neurons might not be necessary. Instead, probabilistic

perceptual decisions can be made by fluctuating neural spatio-

temporal dynamics on a trial-by-trial basis (Wang, 2008).

Neural Dynamics of Multiple-Choice Decision Making
Our simulations reproduce salient findings from single-unit

recordings in LIP during the monkey experiment of Churchland

et al. (2008) (Figure 5). Neurons located close to one of the

targets respond vigorously to the presence of the targets even

before the onset of the motion stimulus. When the motion stim-

ulus is presented, activity drops to a dip which serves as a start-

ing point for the decision-related dynamics. Such a dip in neural

activity was observed in a number of brain areas (Huk and Shad-

len, 2005; Sato and Schall, 2001) and has been suggested to

‘‘reset’’ the integration process. During the decision process,

neurons located around the selected target exhibit quasilinear

ramping activity, with a ramping rate which is monotonically

increasing with coherence level (Figure 5D).

Our simulation results differ from the experimental findings in

relation to the activity of neurons selective to directions orthog-

onal to the selected target in the four-choice task. Churchland

et al. (2008) found that at high coherence levels, neurons orthog-

onal to the selected targets showed a higher buildup rate than

neurons located opposite to the selected target. Such a differ-

ence is not observed in our simulations. This discrepancy may

hint at a possible role of structured inhibition in a putative deci-

sion circuit like LIP. While in our model, for the sake of simplicity,
.
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inhibition was assumed to be uniform hence the same across the

network, it is likely that in the LIP circuit the connectivity from

inhibitory interneurons to excitatory pyramidal cells is structured,

so that synaptic inhibition is different for pyramidal cells located

at 90� and 180� relative to the selected target. Inclusion of struc-

tured lateral inhibition in our LIP model could also account for the

differences in the reaction times observed in the monkey exper-

iment when two targets were separated by 90� versus 180�. This

hypothesis should be tested in future experimental and compu-

tational studies.

In our simulations, the target-input is active during the decision

process, to model the fact that the targets remain on screen

during presentation of the motion stimulus in the monkey exper-

iment. Thus, even at the 0% coherence case, where the motion

stimulus is nonselective, the target-input induces a bias for

activity ramp-up to emerge around one of the targets. More

generally, since a neural circuit underlying multiple-choice deci-

sion making is unlikely to be rewired or reconstructed according

to the number of targets, which may vary from trial to trial, such

a circuit requires a combined representation of the choice alter-

natives and the sensory information on which the decision

should be based, presumably in the form of input signals projec-

ting to the circuit.

The selected target in a given trial was determined in our

model using a population-vector decoding of the neural activity

at the time of threshold crossing (see Supplemental Experi-

mental Procedures). The question of how a broad profile of

activity is realistically ‘‘translated’’ into a categorical choice is

an important goal for future research. A possible mechanism is

a downstream continuous circuit, where movement neurons

fire in an all-or-none fashion, triggering a behavioral response

when the synaptic drive from the decision circuit exceeds a crit-

ical threshold (see below).

Buildup of Neural Activity with a Neutral Sensory Input
The 0% coherence condition, where the sensory input is neutral,

raises important conceptual issues about the decision dy-

namics. In bounded-accumulation models, a neutral input

implies a zero drift rate, and therefore the unconditioned average

activity is flat over time. The neurophysiological data, in contrast,

shows a ramping firing activity, averaged across all trials, even at

0% coherence (Churchland et al., 2008; Roitman and Shadlen,

2002). Consequently, some studies suggested a modified accu-

mulation model, involving a time-varying mechanism (‘‘urgency

signal’’) that causes decisions to terminate as time elapses,

regardless of the sensory evidence (Churchland et al., 2008; Dit-

terich, 2006). How such a mechanism is implemented physiolog-

ically, however, is not clear. Furthermore, in the context of

multiple choice decisions, fitting the behavioral data by this

kind of approach required modification of the urgency signal ac-

cording to the number of choices, resulting in different time

constants and magnitudes of the urgency signal for two and

four choices (Churchland et al., 2008). In contrast, our model

reproduces both ramping firing activity at 0% coherence and

the behavioral data for two and four choices without the need

for time-dependent signals or a decaying bound. Our model

suggests that instead of an urgency signal, a functionally equiv-
Ne
alent effect can naturally arise from accelerated ramping activity

in a strongly recurrent cortical local circuit.

Comparison with Behavioral Data
Our model reproduces salient characteristics of the psycho-

metric functions observed in the monkey behavioral experiment

(Figures 6A and 6B). Although the simulation protocol contains

several parameters, the number of free parameters that were

adjusted to fit the behavioral data is small and, importantly,

the intrinsic properties of the network itself were fixed and

were not changed to fit the data. Some of the parameters in

the protocol were constrained by experimental findings and

were not changed between simulations (see Experimental

Procedures), including the threshold for decision and the motion

stimulus. Other parameters, such as those related to target-input

during target viewing, were adjusted to capture neural firing-

rates in area LIP before the onset of the motion stimulus, but

these details are not essential as they do not substantially affect

the network decision behavior (e.g., the psychometric curves)

(Figure S3). The behavioral data were fitted by adjusting (1) the

strength of the target-input during motion stimulus presentation

(hence the decision process) and (2) the control signal. The

control signal was modified based on the assumption that

subjects use some form of internal adjustment in reaction to

changes in the number of choices (and hence the difficulty of

the task). The values of the control signal that were used to

best fit the experimental data (Figure 6) were close to, but did

not coincide, with the ones that yield maximum reward rates

(Figure 8). However, near the optimal control signal level, the

reward-rate versus control signal curve is fairly shallow (Figure 8),

hence the overall reward rate corresponding to the behaviorally

fitted control signal level is not much different from optimality.

Notably, the model predicts longer response times on error

trials than on correct trials, in accordance with experimental find-

ings from the monkey experiments (Churchland et al., 2008;

Roitman and Shadlen, 2002). In the context of a two-choice

task and a discrete attractor network, Wong and Wang (2006)

used a mean-field reduction of the model and phase-plain anal-

ysis of the system dynamics to show that during error trials the

system’s trajectory in the decision space travels across a

boundary of attraction basins. The dynamics near the boundary

is relatively slow, resulting in longer response times. We think

that the same principle applies to a line attractor network, but

a full analysis of this issue for a continuous circuit model is

beyond the scope of the present study.

Changing the Number of Choices: Implications
on Response Times
Our model enables a systematic study, within a biophysically

realistic scenario, of how changing the number of choice options

affects response times in the task. Generally, the decision time

depends on the starting point of the accumulation process, the

decision threshold, and the slope of the activity build-up during

the decision process, as discussed below.

In our simulations, increasing the number of targets reduces

the firing rate at the beginning of the decision process (Figure 5E).

This agrees with experimental findings from LIP (Churchland

et al., 2008) and resembles the inverse relationship between
uron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1163
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firing rates and the number of saccade targets for selection in the

superior colliculus (SC) (Basso and Wurtz, 1998). We showed

that in the model, the reduced response stems in part from the

recurrent connections within the network: increasing the number

of choices recruits more strongly the inhibitory population, which

in turn attenuates the activity of the pyramidal neurons (see

Supplemental Results). In addition, we assumed that the input

to LIP representing the visual targets is smaller when the number

of targets is increased. Such a normalization of the target input

could be caused by suppressive surround interactions in lower

visual areas upstream from LIP, or by top-down projections

signaling the increased uncertainty associated with a larger

number of targets.

On the basis of experimental findings, we assumed that the

threshold for decision depends neither on coherence level nor

on the number of choices. Yet due to the changes in the starting

point, the excursion from baseline to threshold in our simulations

increases moderately with the number of choices (47 Hz, 51 Hz,

55 Hz for two, four, and eight choices, respectively), explaining in

part the difference in response times between trials with two,

four, and eight choices. The relatively moderate increase in

excursion in our model, that compares directly with the neuro-

physiological data (Churchland et al., 2008), contrasts with

some of the accumulator models of multiple choice decision

making, in which large changes in the threshold are used to

compensate for changes in the number of choice alternatives

(Usher et al., 2002; Bogacz et al., 2007).

Finally, the average slope of the activity ramp-up during the

decision process depends on two factors that have opposing

effects. As long as the similarity effect is not significant,

increasing the number of choice alternatives (e.g., from two to

four) recruits more strongly the inhibitory population in the

network, resulting in slower dynamics and a more moderate

slope of activity build-up (Figure 5D). On the other hand, when

choice alternatives become sufficiently similar (e.g., from four-

to eight-choice alternatives), overlap and lateral interactions

between neural pools representing adjacent choice targets

lead to an acceleration of ramping activity and faster response

times. Importantly, the ramping slope can also be sensitively

tuned by the control signal, as discussed in more detail below

(‘‘A flexible control mechanism for speed-accuracy tradeoff’’).

Similarity between Choice Alternatives and Overlaps
in Their Neural Representation
Similarity plays an important role in classification or categoriza-

tion decisions (Ashby and Perrin, 1988; Kahana and Bennett,

1994; Nosofsky, 1986; Nosofsky, 1997; Tversky, 1977). The

present study examined the neural circuit underpinning of simi-

larity in categorical decision making.

The continuous line-attractor approach allowed us to study

the implications of overlaps in the neural representation of the

different choice alternatives. Neurons in the posterior parietal

cortex have relatively wide tuning for direction of saccade direc-

tion (Chafee and Goldman-Rakic, 1998; Shadlen and Newsome,

2001). Accordingly, in our model a specific direction of move-

ment is represented by a distributed bell-shaped population

response. When the targets are separated by 45�, the neural

representation of adjacent targets is partially overlapping. We
1164 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier In
found that similarity between choice alternatives has an observ-

able behavioral effect, namely the probability of making an error

in the eight-choice simulations is higher for those alternatives

more similar to the correct one (Figure 6C). This prediction is

specific to the continuous model but not to a discrete model,

and is experimentally testable.

Moreover, when choice alternatives are similar, with overlap-

ping neural representations, the ‘‘bumps’’ of activity located

around adjacent targets merge in many of the simulation trials.

This is reminiscent of a previous observation, in the context of

working memory, of the network behavior in response to two

input stimuli (a cue and a distractor). The network dynamics is

governed by winner-take-all competition when the inputs are

far apart, but by vector averaging (with the peak of the network

activity profile intermediate between the two input locations)

when the stimuli are close to each other (Compte et al., 2000).

In our decision-making simulations, this effect resulted in faster

dynamics and shorter response times. To study the effect of

targets separation while controlling for the confounding factor

of number of targets, we performed simulations with four targets

separated form each other by either 90� or 45�. 45� separation

resulted both in activity merging between adjacent bumps and

faster response times compared to 90� separation. It would be

interesting to test experimentally the model’s predictions for

the four-choice task with 45� separation.

At angular differences smaller than 45� and close to the

threshold for direction discrimination, significant overlaps in

the neural representations of the choices emerge. It has been

argued that during fine discriminations, downstream systems

should pool direction-selective MT neurons with a weighting

profile shifted away from the two alternatives (Hol and Treue,

2001; Jazayeri and Movshon, 2006; Purushothaman and Brad-

ley, 2005). The biophysical processes that underlie decision

making involving fine discrimination are unknown and remain

to be elucidated in future research.

A Flexible Control Mechanism for Speed-Accuracy
Tradeoff
We tested how a top-down, nonselective, and time-independent

input to the pyramidal neurons (‘‘control’’ signal) affects the deci-

sion process in the model. We found that increasing the magni-

tude of the control signal accelerates the dynamics in the

network and results in shorter response times, but interestingly,

also reduces the performance. Therefore, the control signal

mediates a speed-accuracy tradeoff that has been observed

experimentally in several tasks (Hale, 1969; Palmer et al., 2005;

Reddi and Carpenter, 2000; Wickelgren, 1977). Our model

provides quantitative and experimentally testable predictions

about the relative change in performance for a given amount of

change in response times (and vice versa). We also showed

that the reward rate in the simulations has an inverted U-shaped

dependence on the magnitude of the control signal, suggesting

that such a control signal may be tuned to optimize overall

performance in the task (Gold and Shadlen, 2002).

A commonly held idea is that a speed-accuracy tradeoff is

achieved by modifications of the decision threshold (e.g., Ratcl-

iff, 1978). Controlling the threshold is plausible from the biolog-

ical point of view (Lo and Wang, 2006), but seems to require
c.
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modifications of synaptic efficacies, which is a gradual and rela-

tively slow process. In addition, the actual activity threshold is

limited by the dynamical range of physiological neurons. Since

the control signal proposed here is implemented in the form of

an input projection to the network, it does not require modifica-

tions of synaptic weights, and enables a more rapid and flexible

reaction to changing task demands.

In conclusion, the present work addressed a key computa-

tional stage during multiple-choice decision making, where inter-

actions of potentially overlapping neural pools lead to formation

of a choice. Our findings provide further support for the role of at-

tractor neural dynamics as a general mechanism for accumula-

tion of sensory evidence over time, decision making, and storage

of a choice in working memory. The model can be extended in

the future in several important ways. For instance, our model

does not deal explicitly with the read-out of the decision result

and generation of eye movement. Lo and Wang (2006), using

a discrete network, proposed that burst firing of downstream

movement neurons may be triggered when excitatory synaptic

input from ramping cortical neurons exceeds a threshold. Gener-

alizing this concept to a continuous network is worthwhile in the

future. In addition, the model could be extended to include

a reciprocal loop between a decision circuit and a control area,

presumably residing in the prefrontal cortex, to explore the

precise mechanism through which a top-down control signal is

internally generated and flexibly adjusted based on performance

monitoring in multiple-choice decision-making processes.

EXPERIMENTAL PROCEDURES

Neurons

Both pyramidal cells and interneurons are modeled as leaky integrate-and-fire

neurons (e.g., Tuckwell, 1988) and are characterized by a resting potential of

VL =�70 mV, a firing threshold Vth =�50 mV, a reset potential Vreset =�55 mV,

a membrane capacitance Cm = 0.5 nF for pyramidal cells and Cm = 0.2 nF for

interneurons, a membrane leak conductance gL = 25 nS for pyramidal cells and

gL = 20 nS for interneurons, and a refractory period tref = 2 ms for pyramidal

cells and tref = 1 ms for interneurons. The subthreshold membrane potential

V(t) obeys

Cm

dVðtÞ
dt

= � gLðVðtÞ � VLÞ � IsynðtÞ (1)

where Isyn(t) is the total synaptic current flowing into the cell. Interactions

between the model neurons are represented by conductance-based synaptic

responses, described by realistic synaptic kinetics.

Synaptic Interactions

The network is endowed with recurrent connections between all its neurons.

The pyramid-to-pyramid connections are directionally tuned: iso-directional

connections are stronger than cross-directional ones (see ‘‘Recurrent Connec-

tivity’’). The connectivity to and from the inhibitory pool is homogeneous and

does not depend on the particular neuron been targeted.

Recurrent excitatory postsynaptic currents (EPSCs) are mediated by AMPA

and NMDA receptors, while recurrent inhibitory postsynaptic currents (IPSCs)

are mediated by GABAA receptors. Neurons also receive external AMPA-

mediated excitatory synaptic inputs, representing sensory information pro-

cessed by other brain areas, as well as background noise due to spontaneous

activity outside the local network.

The total synaptic current to an excitatory neuron i is

IEi;syn =
�

IE/E
i;AMPA + IE/E

i;NMDA + II/E
i;GABA

�
+ IExt/E

i;AMPA + IBack/E
i;AMPA (2)
Ne
where the first three terms represent recurrent projections from excitatory (E)

and inhibitory (I) neurons (see ‘‘Recurrent Connectivity’’), IExt/E
i;AMPA represents

external task-related input signals (see ‘‘Simulation Protocol’’), and IBack/E
i;AMPA

represents background noise (see ‘‘Background Noise’’). Similarly, for the

inhibitory neurons,

IIi;syn =
�

IE/I
i;AMPA + IE/I

i;NMDA + II/I
i;GABA

�
+ IExt/I

i;AMPA + IBack/I
i;AMPA (3)

AMPA-, NMDA- and GABA-mediated synaptic currents are modeled by

Ii;AMPAðtÞ= gAMPAðViðtÞ � VEÞsi;AMPAðtÞ (4)

Ii;NMDAðtÞ=
gNMDAðViðtÞ � VEÞ

1 + ½Mg2 + �expð � 0:062ViðtÞ=3:57Þsi;NMDAðtÞ (5)

Ii;GABAðtÞ= gGABAðViðtÞ � VIÞsi;GABAðtÞ (6)

respectively, where VE = 0 mV, VI = �70 mV. NMDA currents have a voltage

dependence that is controlled by extracellular magnesium concentration

(Jahr and Stevens, 1990), [Mg2+] = 1 mM. si is a synaptic gating variable. For

the recurrent connections, si is given by

siðtÞ=
X

j

wijsjðtÞ (7)

where the index j runs over the presynaptic neurons, wij is the connectivity

strength between the presynaptic neuron j and the postsynaptic neuron i,

and sj depends on the spikes of the presynaptic neuron j (see below).

For the external inputs, si is determined independently for each neuron

(si = si ) according to the spike train that represents the external input to

the neuron.

Given a spike train {tk}, for AMPA and GABAA receptor mediated currents,

the gating variable s (i.e., the fraction of open channels) is determined by

dsðtÞ
dt

= � s

ts

+
X

k

dðt � tkÞ (8)

and for NMDA mediated currents by

dsðtÞ
dt

= � s

ts

+ asxð1� sÞ; dxðtÞ
dt

= � x

tx

+
X

k

dðt � tkÞ (9)

with as = 0.5 kHz and tx = 2 ms. The decay time constant ts is 2 ms for AMPA,

100 ms for NMDA, and 10 ms for GABAA.

Background Noise

All cells receive a background AMPA mediated input, modeled as uncorrelated

Poisson spike trains to each neuron at a rate of vBack = 1700 Hz per cell,

with maximum conductance gBack/E = 2.93 nS and gBack/I = 2.25 nS to the

pyramidal and inhibitory neurons, respectively.

Recurrent Connectivity

The connectivity strength wij between two pyramidal cells depends on the

difference between their preferred directions qi and qj:

wij = Wðqi � qjÞ= J� +
�
J+ � J�

�
exp

 
�ðqi � qjÞ2

2s2
u

!
(10)

withJ+ = 1.73and sw = 12.76�. J� isdeterminedusing the normalization condition

1

360

ð360

0

Wðqi � qjÞdqj = 1 (11)

The connectivity strength to or from the inhibitory neurons are uniform, and

given by

wij =
1

N
(12)

where N is the number of presynaptic neurons.

The maximum recurrent synaptic conductances (in mS) were gE/E
AMPA =

0:2486=NE , gE/E
NMDA = 0:8019=NE , gE/I

AMPA = 0:1958=NE , gE/I
NMDA = 0:6336=NE ,
uron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc. 1165
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gI/E
GABA = 1:0395=NI, gI/I

GABA = 0:8062=NI. With these parameter values, NMDAR

channels contribute 85.6% to recurrent excitation charge entry at a holding

potential of�65 mV. Three features are worth noting. First, recurrent excitation

is taken to be primarily mediated by NMDARs (Wang, 1999). Second, the

network is dominated by recurrent inhibition (Compte et al., 2000). Third,

neurons receive a large amount of background noise.

The recurrent synaptic interactions in the model have heterogeneous trans-

mission latencies. The latencies of projections from excitatory neurons to both

excitatory and inhibitory neurons were drawn from a Gaussian distribution with

a mean value of 1.5 ms and SD of 0.5 ms (Markram et al., 1997). Similarly, the

latencies of all projections originating from inhibitory neurons were drawn from

a Gaussian distribution with a mean of 0.3 ms and SD of 0.1 ms (Bartos et al.,

2001).

Simulation Protocol

We constructed a simulation protocol to model the multiple-choice motion

discrimination task of Churchland et al. (2008) (Figure 2). The protocol consists

of external input signals to the model neurons. The pyramidal neurons receive

three external inputs, representing the visual targets, the motion stimulus,

and a modulatory control signal, respectively. The total synaptic inputs to

pyramidal cell i is accordingly

IExt/E
i;AMPA = ITar

i;AMPA + IStim
i;AMPA + IControl

i;AMPA (13)

where ITar
i;AMPA, IStim

i;AMPA, and IControl
i;AMPA are governed by Equation 4, with maximal

conductances gTar = 11.4 mS, gStim = 4 mS, and gControl = 7.5 mS, respectively.

The corresponding synaptic gate variables sTar
i , sStim

i and sControl
i are deter-

mined by Equation 8, where the presynaptic spikes are modeled as Poisson

spike trains with rates nTar
i , nStim

i , and nControl
i described in the following.

The target-input projects selectively to pyramidal neurons located around

the targets. The rate nTar
i depends on the preferred direction qi of the neuron

been targeted and varies with time:

nTar
i = antar

hðtÞ
Xntar

k = 1

exp

 
�
�
qi � qk

tar

�2

s2
tar

!
(14)

where ntar is the number of targets, qk
tar is the direction of the kth target, and

star = 10�. antar
is a coefficient that represents suppression of the target-input

to LIP associated with increasing the number of targets, and is equal to 1, 0.85

and 0.75 for two, four, and eight targets, respectively. Finally, the time-depen-

dent element h(t) is described by (cf. Wong et al., 2007)

hðtÞ=

0 0<t<t0

A1 + A2expð � ðt � t0Þ=t1Þ t0%t<t1 + 80

A3 + ðA1 � A3Þexpð � ðt � t1 � 80Þ=t2Þ t1 + 80%t

8>>>><
>>>>:

(15)

where t0 = 500 ms and t1 = 1300 ms are the onset times for the targets and the

motion stimulus inputs, respectively. The time course of h(t) aims to model

spike-rate adaptation of the input neurons representing the targets following

the onset of the targets, as well as suppression of the input representing the

targets following the onset of the motion stimulus, to account for a dip in the

activity as observed experimentally (Roitman and Shadlen, 2002; Huk and

Shadlen, 2005). We used t1 = 50 ms and t2 = 15 ms. The parameters A1 and

A2 and determine the magnitude of the target input before the onset of the

motion stimulus, and were adjusted to capture experimental firing rates of

LIP neurons (Figure 5). Performance and response times, however, are robust

to changes in A1 and A2 (Figure S3). A3 determines the magnitude of the target

input during the decision process. A3 affects directly the psychometric

functions and was adjusted to fit experimental behavioral data. We used

A1 = 320, A2 = 256, A3 = 25.

The motion stimulus input was constructed based on tuning properties of

MT neurons (Britten et al., 1993; Britten and Newsome, 1998). Specifically,

the directional tuning of MT neurons to random-dot stimuli can be approxi-

mated by a Gaussian function, with a tuning width which is largely independent

of coherence level. In addition, responses are approximately linear as function

of coherence, with slopes that are about four times higher for motion in the

preferred direction than for the null direction. Finally, most MT neurons are
1166 Neuron 60, 1153–1168, December 26, 2008 ª2008 Elsevier Inc
moderately responsive to 0% random-dot stimuli. Accordingly, we modeled

the motion stimulus input by

nStim
i = r0 + c0

�
� r1 + r2exp

�
� ðqi � qstimÞ2=s2

stim

��
(16)

where c0 (0 % c0 % 1) denotes the stimulus coherence and qstim is the coherent

motion direction. We used r0 = 20 Hz, r1 = 20 Hz, r2 = 100 Hz, and sstim = 40�.

We also included in the simulations a time-invariant and nonselective

‘‘control’’ signal that was active from the motion stimulus onset (t = 1500 ms)

on. Its firing rate nControl varied between simulations (see text).

The inhibitory neurons receive one external input signal during the targets

presentation:

IExt/I
i;AMPA = IFFinh

i;AMPA (17)

where IFFinh
i;AMPA is governed by Equation 4, with maximal conductance gTar =

8 mS. sFFinh is determined by a presynaptic Poisson spike train with rate vFFinh(t)

that depends on time but neither on the neuron been targeted nor on the

number of targets:

nFFinhðtÞ=

0 0<t<t0

B1 + B2expð � ðt � t0Þ=t1Þ t0%t <t1 + 80

B1expð � ðt � t1 � 80Þ=t2Þ t1 + 80%t

8>>><
>>>:

(18)

with t0 and t1 as described for Equation 15. The time course this input parallels

that of the target input to the pyramidal neurons, to mimic spike-rate adapta-

tion in the input neurons projecting to the network following the onset of the

targets. We used B1 = 128 and B2 = 102.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Results, Experimental Proce-

dures, and figures and can be found with this article online at http://www.

neuron.org/supplemental/S0896-6273(08)01049-0.
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