
Decision making refers to an evaluative process of selecting a particu-
lar action from a set of alternatives. When the mapping between a
particular action and its outcome or utility is fixed, the decision to
select the action with maximum utility can be considered optimal or
rational. However, animals face more difficult problems in a multi-
agent environment, in which the outcome of one’s decision can be
influenced by the decisions of other animals. Game theory provides a
mathematical framework to analyze decision making in a group of
agents1–4. A game is defined by a set of actions available to each player,
and a payoff matrix that specifies the reward or penalty for each
player as a function of decisions made by all players. A solution or
equilibrium in game theory refers to a set of strategies selected by a
group of rational players1,5,6. Nash has proved that any n-player com-
petitive game has at least one equilibrium in which no players can
benefit by changing their strategies individually5. These equilibrium
strategies often take the form of a mixed strategy, which is defined as a
probability density function over the alternative actions available to
each player. This requires players to choose randomly among alterna-
tive choices, as in the game of rock-paper-scissors during which
choosing one of the alternatives (e.g., paper) exclusively allows the
opponent to exploit such a biased choice (with scissors).

Many studies have shown that people frequently deviate from the
predictions of game theory7–21. Although the magnitudes of such
deviations are often small, they have important implications regard-
ing the validity of assumptions in game theory, such as the rational-
ity of human decision-makers22–27. In addition, strategies of human
decision-makers change with their experience17–21. These adaptive
processes might be based on reinforcement learning algorithms28,
which can be used to approximate optimal decision-making strate-
gies in a dynamic environment. In the present study, we analyzed the

performance of monkeys playing a zero-sum game against a com-
puter opponent to determine how closely their behaviors match the
predictions of game theory and whether reinforcement learning
algorithms can account for any deviations from such predictions. In
addition, neural activity was recorded from the DLPFC to investigate
its role during strategic decision making in a multi-agent environ-
ment. The results showed that the animal’s choice behavior during a
competitive game could be accounted for by a reinforcement learn-
ing algorithm. Individual prefrontal neurons often modulated their
activity according to the choice of the animal in the previous trial,
the outcome of that choice, and the conjunction between the choice
and its outcome. This suggests that the PFC may be involved in
updating the animal’s decision-making strategy based on a rein-
forcement learning algorithm.

RESULTS
Behavioral performance
Two rhesus monkeys played a game analogous to matching pennies
against a computer in an oculomotor free-choice task (Fig. 1a;
Methods). The animal was rewarded when it selected the same tar-
get as the computer that was programmed to minimize the animal’s
reward by exploiting the statistical bias in the animal’s choice behav-
ior. Accordingly, the optimal strategy for the animal was to choose
the targets randomly with equal probabilities, which corresponds to
the Nash equilibrium in the matching pennies game. To determine
how the animal’s decisions were influenced by the strategy of the
opponent, we manipulated the amount of information that was
used by the computer opponent (see Methods). In algorithm 0, the
computer selected its targets randomly with equal probabilities,
regardless of the animal’s choice patterns. In algorithm 1, the com-
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In a multi-agent environment, where the outcomes of one’s actions change dynamically because they are related to the behavior
of other beings, it becomes difficult to make an optimal decision about how to act. Although game theory provides normative
solutions for decision making in groups, how such decision-making strategies are altered by experience is poorly understood.
These adaptive processes might resemble reinforcement learning algorithms, which provide a general framework for finding
optimal strategies in a dynamic environment. Here we investigated the role of prefrontal cortex (PFC) in dynamic decision making
in monkeys. As in reinforcement learning, the animal’s choice during a competitive game was biased by its choice and reward
history, as well as by the strategies of its opponent. Furthermore, neurons in the dorsolateral prefrontal cortex (DLPFC) encoded
the animal’s past decisions and payoffs, as well as the conjunction between the two, providing signals necessary to update the
estimates of expected reward. Thus, PFC might have a key role in optimizing decision-making strategies.
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puter analyzed only the animal’s choice history, but not its reward
history. In algorithm 2, both choice and reward histories were ana-
lyzed. In both algorithms 1 and 2, the computer chose its target ran-
domly if it did not find any systematic bias in the animal’s choice
behavior. Therefore, a reward rate near 0.5 indicates that the ani-
mal’s performance was optimal.

Indeed, the animal’s reward rate was close to 0.5 for all algorithms,
indicating that the animal’s performance was nearly optimal. In
algorithm 0, the reward rate was fixed at 0.5 regardless of the ani-
mal’s behavior, and therefore there was no incentive for the animal to
choose the targets with equal probabilities. In fact, both animals
chose the right-hand target more frequently (P = 0.70 and 0.90 and 
n = 5,327 and 1,669 trials, for the two animals, respectively) than the

left-hand target. For the remaining two algo-
rithms, the probability of choosing the right-
hand target was much closer to 0.5 (Fig. 1c),
which corresponds to the Nash equilibrium
of the matching pennies game. In addition,
the probability of choosing a given target
was relatively unaffected by the animal’s
choice in the previous trial. For example, the
probability that the animal would select the
same target as in the previous trial was also
close to 0.5 (P = 0.51 ± 0.06 and 0.50 ± 0.04
and n = 120,254 and 74,113 trials, for algo-
rithms 1 and 2, respectively). In contrast, the

animal’s choice was strongly influenced by the computer’s choice in
the previous trial, especially in algorithm 1. In the game of matching
pennies, the strategy to choose the same target selected by the oppo-
nent in the previous trial can be referred to as a win-stay-lose-switch
(WSLS) strategy, as this is equivalent to choosing the same target as
in the previous trial if that choice was rewarded and choosing the
opposite target otherwise. The probability of the WSLS strategy in
algorithm 1 (0.73 ± 0.14) was significantly higher than that in algo-
rithm 2 (0.53 ± 0.06; P < 10−16; Fig. 1d). Although the tendency for
the WSLS strategy in algorithm 2 was only slightly above chance, this
bias was still statistically significant (P < 10−5). Similarly, average
mutual information between the sequence of animal’s choice and
reward in three successive trials and the animal’s choice in the fol-
lowing trial decreased from 0.245 (± 0.205) bits for algorithm 1 to
0.043 (± 0.035) bits for algorithm 2.

Reinforcement learning model
Using a reinforcement learning model19–21,28,29, we tested whether
the animal’s decision was systematically influenced by the cumulative
effects of reward history. In this model, a decision was based on the
difference between the value functions (that is, expected reward) for
the two targets. Denoting the value functions of the two targets (L and
R) at trial t as Vt(L) and Vt(R), the probability of choosing each target
is given by the logit transformation of the difference between the
value functions30. In other words,

logit P(R) ≡ log P(R)/(1 − P(R)) = Vt(R) − Vt(L).

Figure 1 Task and behavioral performance. 
(a) Free-choice task and payoff matrix for the
animal during the competitive game (1, reward;
0, no reward). (b) Recording sites in PFC. Frontal
eye field (gray area in the inset) was defined by
electrical stimulation50. (c) Frequency
histograms for the probability of choosing the
right-hand target in algorithms 1 and 2. 
(d) Probability of the win-stay-lose-switch
(WSLS) strategy (abscissa) versus probability of
reward (ordinate). (e) Difference in the value
functions for the two targets estimated from a
reinforcement learning model (abscissa) versus
the probability of choosing the target at the right
(ordinate). Error bars indicate standard error of
the mean (s.e.m.). Histograms show the
frequency of trials versus the difference in the
value functions. Solid line, prediction of the
reinforcement learning model. In all panels, dark
and light symbols indicate the results from the
two animals, respectively.

Table 1  Parameters for the reinforcement learning model.

Algorithm Monkey α ∆1 ∆2

1 C 0.176 0.661 −0.554

(0.130, 0.220) (0.619, 0.704) (−0.597, −0.512)

E 0.170 0.941 −1.064

(0.143, 0.198) (0.903, 0.979) (−1.104, −1.024)

2 C 0.986 0.033 0.016

(0.983, 0.988) (0.028, 0.039) (0.012, 0.021)

E 0.828 0.195 −0.143

(0.801, 0.851) (0.171, 0.218) (−0.169, −0.118)

α, discount factor; ∆1 and ∆2, changes in the value function associated with rewarded
and unrewarded targets selected by the animal, respectively. The numbers in
parentheses indicate 99.9% confidence intervals.
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The value function, Vt(x), for target x, was
updated after each trial according to the fol-
lowing:

Vt+1(x) = αVt(x) + ∆t(x),

where α is a discount factor, and ∆t(x)
denotes the change in the value function
determined by the animal’s decision and its
outcome. In the current model, ∆t(x) = ∆1 if
the animal selects the target x and is
rewarded, ∆t(x) = ∆2 if the animal selects the
target x and is not rewarded, and ∆t(x) = 0 if
the animal does not select the target x. We
introduced a separate parameter for the
unrewarded target (∆2) because the proba-
bility of choosing the same target after losing
a reward was significantly different from the
probability of switching to the other target
for all animals and for both algorithms 1 and
2. Maximum likelihood estimates31 of the
model parameters (Table 1) showed that a frequent use of the WSLS
strategy during algorithm 1 was reflected in a relatively small dis-
count factor (α < 0.2), a large positive ∆1 (> 0.6) and a large negative
∆2 (< −0.5) in both animals. For algorithm 1, this led to a largely
bimodal distribution for the difference in the value functions 
(Fig. 1e). In contrast, the magnitude of changes in value function
during algorithm 2 was smaller, indicating that the outcome of pre-
vious choices only weakly influenced the subsequent choice of the
animal. In addition, the discount factor for algorithm 2 was relatively
large (α > 0.8). This suggests that the animal’s choice was systemati-
cally influenced by the combined effects of previous reward history
even in algorithm 2. The combination of model parameters for algo-
rithm 2 produced an approximately normal distribution for the dif-

ference in value functions (Fig. 1e). This implies that for most trials,
the difference in the value functions of the two targets was relatively
small, making it difficult to predict the animal’s choice reliably. These
results suggest that during a competitive game, the monkeys might
have approximated the optimal decision-making strategy using a
reinforcement learning algorithm.

Prefrontal activity during a competitive game
The value functions in the above reinforcement learning model were
updated according to the animal’s decisions and the outcomes of
those decisions. To determine whether such signals are encoded in the
activity of individual neurons in PFC, we recorded single-neuron
activity in the DLPFC while the animal played the same free-choice

task. During the neurophysiological record-
ing, the computer selected its target accord-
ing to algorithm 2. A total of 132 neurons
were examined during a minimum of 128
free-choice trials (mean = 583 trials; Fig. 1b).
As a control, each neuron was also examined
during 128 trials of a visual search task in
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Figure 2 Effects of relative expected reward (i.e., difference in value functions) and its trial-to-trial
changes on the activity of prefrontal neurons. (a) Percentage of neurons with significant correlation 
(t-test, P < 0.05) between their activity and the difference in the value functions for the two targets
(VD = Vτ(R) − Vτ(L)) estimated for the current (τ = t) and previous (τ = t − 1) trials, or between the
activity and the changes in the value functions between the two successive trials (VD change = 
∆t–1(R) − ∆t–1(L)). (b) Correlation coefficient between the VD change and the activity in a given neuron
(ordinate), plotted against correlation coefficient between the VD in the previous trial (i.e., 
Vt−1(R) − Vt−1(L)) and the activity of the same neuron (abscissa). Black (gray) symbols indicate the
neurons in which both (either) correlation coefficients were significantly different from 0 (t-test, 
P < 0.05). The numbers in each panel correspond to Spearman’s rank correlation coefficient (r) and
its level of significance (P).

Figure 3 Percentages of neurons encoding
signals related to the animal’s decision. White
bars show the percentage of neurons (n = 132)
with significant main and interaction effects in a
three-way ANOVA (P × R × C). Light gray bars
show the same information for the neurons with
>256 free-choice trials, which was tested for
stationarity in free-choice trials (n = 112). Dark
gray bars show the percentage of neurons with
significant effects in the three-way ANOVA that
also varied with the task (search vs. choice) in a
four-way ANOVA (Task × P × R × C). This analysis
was performed only for the neurons with >256
free-choice trials for comparison with the control
analysis to test stationarity. Black histograms
show the percentage of neurons with significant
effects in the three-way ANOVA that also have
significant non-stationarity in a control 4-way
ANOVA across the two successive blocks of 128
free-choice trials.
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the previous trial exerted a significant influ-
ence on the activity before and during the
fore-period, as well as during the delay
period (3-way ANOVA, P < 0.001). In addi-
tion, activity during the movement period
was still influenced by the animal’s choice in
the previous trial and its outcome, as well as
by their interactions with the animal’s choice
in the current trial. To determine whether
any of these effects could be attributed to sys-
tematic variability in eye movements, the
above analysis was repeated using the residu-
als from a regression model in which the neu-
ral activity related to a set of eye movement
parameters was factored out (Methods). The
results were nearly identical, with the only
difference found in the loss of significance
for the effect of the current choice. During
the fore-period, 35% of neurons showed a
significant effect of the animal’s choice in the
previous trial on the residuals from the same
regression model.

It is possible that the animal’s choice in the
previous trial influenced the activity of this
neuron during the next trial through system-
atic changes in unidentified sensorimotor

events, such as licking or eye movements during the inter-trial inter-
val, that were not experimentally controlled. This was tested by com-
paring the activity of the same neuron in the search and free-choice
trials. For the neuron shown in Figure 4, activity during search trials
was significantly affected by the position of the target in the previous
trial only during the fore-period, and this effect was opposite to and
significantly different from that found in the free-choice trials (4-way
ANOVA, P < 10−5). The raster plots show that this change occurred
within a few trials after the animal switched from search to free-choice
trials (Fig. 4). These results suggest that the effect of the animal’s
choice in the previous trial on the activity of this neuron did not
merely reflect nonspecific sensorimotor events. In 17% of the neurons
that showed a significant effect of the animal’s previous choice during
the fore-period, there was also a significant interaction between the
task type (search vs. free-choice) and the animal’s choice in the previ-
ous trial (Fig. 3). This indicates that signals related to the animal’s past
choice were actively maintained in the PFC according to the type of
decision. It is unlikely that this was entirely due to an ongoing drift in
the background activity (i.e., non-stationarity), as the control analysis
performed on two successive blocks of free-choice trials did not pro-
duce a single case with the same effect during the fore-period (Fig. 3).

During the fore-period, 39% of neurons showed a significant effect
of the reward in the previous trial. For example, the activity of the neu-

which the animal’s decision was guided by sensory stimuli (Methods).
During the free-choice trials, activity in some prefrontal neurons

was influenced by the difference in the value functions for the two tar-
gets (that is, V(R) − V(L)), although the effects in individual neurons
were relatively small (Fig. 2). This was not entirely due to the animal’s
choice and its outcome in the previous trial, as the value functions
estimated for the previous trial produced similar results (Fig. 2a). If
individual PFC neurons are involved in the temporal integration of
value functions according to the reinforcement learning model
described above, differences in the value functions (i.e., V(x)) and
their changes (i.e., ∆(x)) would similarly influence the activity of PFC
neurons. Interestingly, such patterns were found for the delay and
movement periods, but not for the fore-period (Methods; Fig. 2b).
These results suggest that some prefrontal neurons might be involved
in temporally integrating the signals related to previous choice and its
outcome to update value functions.

To examine how the activity of individual PFC neurons is influ-
enced by the animal’s choices and their outcomes, we analyzed neural
activity by three-way ANOVA with the animal’s choice and reward in
the previous trial and its choice in the current trial as main factors.
For 39% of PFC neurons, the activity during the fore-period was
influenced by the animal’s choice in the previous trial (Fig. 3). For
example, in the neuron illustrated in Figure 4, the animal’s choice in
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Figure 4 Example neuron showing a significant
effect of the animal’s choice in the previous trial.
Top, spike density functions averaged according
to the animal’s choice (L and R) and reward 
(+, reward; −, no reward) in the previous trial and
the choice in the current trial. A dotted vertical
line indicates the onset of the fore-period, and the
two solid lines the beginning and end of the delay
period. Bottom, raster plots showing the activity of
the same neuron sorted according to the same
three factors during the search (gray background)
and free-choice (white background) trials.
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ron in Figure 5 was higher throughout the
entire trial after the animal was not rewarded
in the previous trial, compared to when the
animal was rewarded. This effect was nearly
unchanged when we removed the eye-move-
ment related activity in a regression analysis,
both in this single-neuron example and for
the population as a whole. Overall, 37% of
neurons showed the effect of the previous
reward when the analysis was performed on
the residuals from the regression model. The
possibility that this effect was entirely due to
uncontrolled sensorimotor events is also
unlikely, as a substantial proportion of these
neurons (21%) also showed a significant interaction between the task
type and the previous reward during the fore-period (Fig. 3).

To update the value functions in a reinforcement learning model,
signals related to the animal’s choice and its outcome must be com-
bined, because each variable alone does not specify how the value
function of a particular target should be changed. Similarly, activity of
the neurons in the PFC was often influenced by the conjunction of
these two variables. In the neuron in Figure 6, for example, there was a
gradual buildup of activity during the fore-period, but this occurred

only when the animal had selected the right-hand target in the previ-
ous trial, and this choice was not rewarded. During the delay period,
the activity of this neuron diverged to reflect the animal’s choice in the
current trial (Fig. 6, arrow). The same neuron showed markedly
weaker activity during the search trials, suggesting that information
coded in the activity of this neuron regarding the outcome of choosing
a particular target was actively maintained in free-choice trials (Fig. 6).
For the fore-period, 20% of the neurons showed significant interac-
tion between the animal’s choice and its outcome in the previous trial

(P < 0.05; Fig. 3). Activity related to eye move-
ments was not an important factor: 90% of
these neurons showed the same effect in the
residuals from the regression analysis that fac-
tored out the effects of eye movements.
Furthermore, during the fore-period, 27% of
the same neurons showed significant three-
way interactions among task type, animal’s
choice in the previous trial and outcome of
the previous trial. In contrast, the control
analysis during the first two blocks of the free-
choice task revealed such an effect only in 5%
of the neurons (Fig. 3). These results indicate
that signals related to the conjunction of the
animal’s previous decision and its outcome
are processed differently in the PFC according
to the type of decisions made by the animal.

DISCUSSION
Interaction with other intelligent beings is
fundamentally different from—and more
complex than—dealing with inanimate
objects32,33. Interactions with other animals
are complicated by the fact that their behav-
ioral strategies often change as a result of
one’s own behavior. Therefore, the analysis
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Figure 5 Example neuron showing a significant
effect of the reward in the previous trial. Same
format as in Figure 4.

Figure 6 Example neuron with a significant
interaction between the animal’s choice and its
outcome in the previous trial. Same format as in
Figure 4. Arrows indicate the time when the
animal’s choice in the current trial was first
reflected in the neural activity.
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of decision making in a group requires a more sophisticated analy-
tical framework, which is provided by game theory. Matching pen-
nies is a relatively simple zero-sum game that involves two players
and two alternative choices. The present study examined the behav-
ior of monkeys playing a competitive game similar to matching
pennies against a computer opponent. It is not known whether
monkeys treated this game as a competitive situation with another
intentional being. Nevertheless, the same formal framework of
game theory is applicable to the task used in this study, and as pre-
dicted, the animal’s behavior was influenced by the opponent’s
strategy. When the computer blindly played the equilibrium strat-
egy regardless of the animal’s behavior, the animals selected one of
the targets more frequently. In contrast, when the computer oppo-
nent began exploiting biases in the animal’s choice sequence,
the animal’s behavior approached the equilibrium strategy.
Furthermore, when the computer did not examine the animal’s
reward history (algorithm 1), the animals achieved a nearly optimal
reward rate by adopting the win-stay-lose-switch (WSLS) strategy.
This was possible because this strategy was not detected by the
computer. Finally, the frequency of the WSLS strategy was reduced
when the computer began exploiting biases in the animal’s choice
and reward sequences (algorithm 2).

These results also suggest that the animals approximated the opti-
mal strategy using a reinforcement learning algorithm. This model
assumes that the animals base their decisions, in part, on the estimates
of expected rewards for the two targets and tend to select the target
with larger expected reward. During zero-sum games such as match-
ing pennies, strategies of the players behaving according to some rein-
forcement learning algorithms would gradually converge on a set of
equilibrium strategies5–7. However, it is important to update the value
functions of different targets by a small amount after each play when
playing against a fully informed rational player (such as algorithm 2
in the present study). This is because large, predictable changes in the
value functions would reveal one’s next choice to the opponent. In the
present study, the magnitude of changes in the value function varied
according to the strategy of the opponent and was adjusted through
the animal’s experience.

Finally, neurophysiological recordings in the PFC revealed a
potential neural basis for updating the value functions adaptively
while interacting with a rational opponent. Reward-related activity is
widespread in the brain34–38. In particular, signals related to expected
reward (i.e., value functions) are present in various brain areas39–43,
including the DLPFC44–48. Our results showed that neurons in the
DLPFC also code signals related to the animal’s choice in the previ-
ous trial. Such signals might be actively maintained and processed
differently in the DLPFC according to the type of information
required for the animal’s upcoming decisions. Furthermore, signals
related to the animal’s past choices and their outcomes are combined
at the level of individual PFC neurons. These signals might then be
temporally integrated according to a reinforcement learning algo-
rithm to update the value functions for alternative actions. Many
neurons in the PFC show persistent activity during a working mem-
ory task, and the same circuitry might be ideally suited for temporal
integration of signals related to the animal’s previous choice and its
outcome49. Although the present study examined the animal’s choice
behavior in a competitive game, reinforcement learning algorithms
can converge on optimal solutions for a wide range of decision-mak-
ing problems in dynamic environments. Therefore, the results from
the present study suggest that the PFC has an important role in opti-
mizing decision-making strategies in a dynamic environment that
may include multiple agents.

METHODS
Animal preparations. Two male rhesus monkeys were used. Their eye move-
ments were monitored at a sampling rate of 250 Hz with either a scleral eye
coil or a high-speed video-based eye tracker (ET49, Thomas Recording). All
the procedures used in this study conformed to National Institutes of Health
guidelines and were approved by the University of Rochester Committee on
Animal Research.

Behavioral task. Monkeys were trained to play a competitive game analogous to
matching pennies against a computer in an oculomotor free-choice task 
(Fig. 1a). During a 0.5-s fore-period, they fixated a small yellow square (0.9 ×
0.9°; CIE x = 0.432, y = 0.494, Y = 62.9 cd/m2) in the center of a computer
screen, and then two identical green disks (radius = 0.6°; CIE x = 0.286,
y = 0.606, Y = 43.2 cd/m2) were presented 5° away in diametrically opposed
locations. The central target disappeared after a 0.5-s delay period, and the ani-
mal was required to shift its gaze to one of the targets. At the end of a 0.5-s hold
period, a red ring (radius = 1°; CIE x = 0.632, y = 0.341, Y = 17.6 cd/m2)
appeared around the target selected by the computer, and the animal main-
tained its fixation for another 0.2 s. The animal was rewarded at the end of this
second hold period, but only if it selected the same target as the computer. The
computer had been programmed to exploit certain biases displayed by the ani-
mal in making its choices. Each neuron was also tested in a visual search task.
This task was identical to the free-choice task, except that one of the targets in
the free-choice task was replaced by a distractor (red disk). The animal was
required to shift its gaze toward the remaining target (green disk), and this was
rewarded randomly with 50% probability. This made it possible to examine the
effect of reward on the neural activity. The location of the target was selected
from the two alternative locations pseudo-randomly for each search trial.

Algorithms for computer opponent. During the free-choice task, the computer
selected its target according to one of three different algorithms. In algorithm 0,
the computer selected the two targets randomly with equal probabilities, which
corresponds to the Nash equilibrium in the matching pennies game. In algo-
rithm 1, the computer exploited any systematic bias in the animal’s choice
sequence to minimize the animal’s reward rate. The computer saved the entire
history of the animal’s choices in a given session, and used this information to
predict the animal’s next choice by testing a set of hypotheses. First, the condi-
tional probabilities of choosing each target given the animal’s choices in the
preceding n trials (n = 0 to 4) were estimated. Next, each of these conditional
probabilities was tested against the hypothesis that the animal had chosen both
targets with equal probabilities. When none of these hypotheses was rejected,
the computer selected each target randomly with 50% probability, as in algo-
rithm 0. Otherwise, the computer biased its selection according to the probabil-
ity with the largest deviation from 0.5 that was statistically significant (binomial
test, P < 0.05). For example, if the animal chose the right-hand target with 80%
probability, the computer selected the left-hand target with the same probabil-
ity. Therefore, to maximize reward, animals needed to choose both targets with
equal frequency and select a target on each trial independently from previous
choices. In algorithm 2, the computer exploited any systematic bias in the ani-
mal’s choice and reward sequences. In addition to the hypotheses tested in algo-
rithm 1, algorithm 2 also tested the hypothesis that the animal’s decisions were
independent of prior choices and their payoffs in the preceding n trials (n = 1 to
4). Thus, to maximize total reward in algorithm 2, it was necessary for the ani-
mal to choose both targets with equal frequency and to make choices independ-
ently from previous choices and payoffs.

Neurophysiological recording. Single-unit activity was recorded from the
neurons in the DLPFC of two monkeys using a five-channel multi-electrode
recording system (Thomas Recording). The placement of the recording cham-
ber was guided by magnetic resonance images, and this was confirmed in one
animal by metal pins inserted in known anatomical locations. In addition, the
frontal eye field (FEF) was defined in both animals as the area in which sac-
cades were evoked by electrical stimulations with currents <50 µA (ref. 50). All
the neurons described in the present study were anterior to the FEF.

Analysis of behavioral data. The frequency of a behavioral event (e.g., reward)
was examined with the corresponding probability averaged across recording
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sessions and its standard deviation. The values of mutual information were
corrected for the finite sample size. Null hypotheses in the analysis of behav-
ioral data were tested using a binomial test or a t-test (P < 0.05). Parameters in
the reinforcement learning model were estimated by a maximum likelihood
procedure, using a function minimization algorithm in Matlab (Mathworks
Inc.), and confidence intervals were estimated by profile likelihood intervals31.

Analysis of neural data. Spikes during a series of 500-ms bins were counted
separately for each trial. The effects of the animal’s choice (P) and reward (R)
in the previous trial and the choice in the current trial (C) were analyzed in a
3-way ANOVA (P × R × C). The effect of the task (search versus free-choice)
was analyzed in a four-way ANOVA (Task × P × R × C). As a control analysis to
determine whether the task effect was due to non-stationarity in neural activ-
ity, the same four-way ANOVA was performed for the first two successive
blocks of 128 trials in the free-choice task (Fig. 3). To determine whether eye
movements were confounding factors, the above analysis was repeated using
the residuals from the following regression model:

S = a0 + a1 Xpre80 + a2 Ypre80 + a3 XFP + a4 YFP + a5 XSV + a6 YSV

+ a7 SRT + a8 PV + ε

where S indicates the spike count, Xpre80 (Ypre80) the horizontal (vertical) eye
position 80 ms before the onset of central fixation target, XFP (YFP) the average
horizontal (vertical) eye position during the fore-period, XSV (YSV) the hori-
zontal (vertical) component of the saccade directed to the target, SRT and PV
the saccadic reaction time and the peak velocity of the saccade, and ε the error
term.
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